1,283
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world

, , , &
Article: 2174189 | Received 05 Dec 2022, Accepted 24 Jan 2023, Published online: 24 Feb 2023

References

  • Abramson, B., Brown, J., Edwards, W., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A bayesian system for forecasting severe weather. International Journal of Forecasting, 12(1), 57–71. https://doi.org/10.1016/0169-2070(95)00664-8
  • Alomar, M. K., Khaleel, F., Aljumaily, M. M., Masood, A., Razali, S. F. M., AlSaadi, M. A., Al-Ansari, N., & Hamed, M. M. (2022). Data-driven models for atmospheric air temperature forecasting at a continental climate region. PLoS ONE, 17(11), e0277079. https://doi.org/10.1371/journal.pone.0277079
  • Anushka, P., Hazi, MD,A, & Upaka, R. (2020). Comparison of different artificial neural network (ANN) training algorithms to predict the atmospheric temperature in Tabuk, Saudi Arabia. MAUSAM, 71(2), 233–244. https://doi.org/10.54302/mausam.v71i2.22
  • Attar, N. F., Khalili, K., Behmanesh, J., & Khan Mohammadi, N. (2018). On the reliability of soft computing methods in the estimation of dew point temperature: The case of arid regions of Iran. Computers and Electronics in Agriculture, 153, 334–346. https://doi.org/10.1016/j.compag.2018.08.029
  • Band, S. S., Hegi, E., Bateni, S., Karimi, H., Rabiee, M., Samadianfard, S., Chau, K.W., & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, 15(1), 1147–1158.
  • Begg, C. M., Begg, K. S., Du Toit, J. T., & Mills, M. G. L. (2003). Scent-marking behavior of the honey badger, mellivora capensis (mustelidae), in the southern Kalahari. Animal Behaviour, 66(5), 917–929. https://doi.org/10.1006/anbe.2003.2223
  • Begg, C. M., Begg, K. S., Du Toit, J. T., & Mills, M. G. L. (2005). Life-history variables of an atypical mustelid, the honey badger Mellivora capensis. Journal of Zoology, 265(1), 17–22. https://doi.org/10.1017/S0952836904005990
  • Chen, L., & Lai, X. (2011). Comparison between arima and ann models used in short-term wind speed forecasting, in: 2011 Asia-Pacific Power and Energy Engineering Conference, IEEE. pp. 1–4.
  • Chevalier, R. F., Hoogenboom, G., McClendon, R. W., & Paz, A. J. (2011). Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks. Neural Computing and Applications, 20(1), 151–159. https://doi.org/10.1007/s00521-010-0363-y
  • Cifuentes, J., Marulanda, G., Bello, A., & Reneses, J. (2020). Air temperature forecasting using machine learning techniques: A review. Energies, 13(16), 4215. https://doi.org/10.3390/en13164215
  • Cofino, A. S., Cano Trueba, R., Sordo, C. M., & Guti 'errez Llorente, J. M. (2002). Bayesian networks for probabilistic weather prediction.
  • Curceac, S., Ternynck, C., Ouarda, T. B., Chebana, F., & Niang, S. D. (2019). Short-term air temperature forecasting using nonparametric functional data analysis and SARMA models. Environmental Modelling & Software, 111, 394–408. https://doi.org/10.1016/j.envsoft.2018.09.017
  • Deng, T., Duan, H. F., & Keramat, A. (2022). Spatiotemporal characterization and forecasting of coastal water quality in the semi-enclosed Tolo Harbour based on machine learning and EKC analysis. Engineering Applications of Computational Fluid Mechanics, 16(1), 694–712. https://doi.org/10.1080/19942060.2022.2035257
  • Elseify, M. A., Kamel, S., Abdel-Mawgoud, H., & Elattar, E. (2022). A novel approach based on honey badger algorithm for optimal allocation of multiple DG and capacitor in radial distribution networks considering power loss sensitivity. Mathematics, 10(12), 2081. https://doi.org/10.3390/math10122081
  • Ferreira, C. (2001a). Gene expression programming in problem solving. In: 6th Online World Conference on Soft computing in Industrial Applications (invited tutorial).
  • Ferreira, C. (2001b). Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 13(2), 87–129. https://doi.org/10.48550/arXiv.cs/0102027
  • Handler, S. L., Reeves, H. D., & McGovern, A. (2020). Development of a probabilistic subfreezing road temperature nowcast and forecast using machine learning. Weather and Forecasting, 1845–1863. https://doi.org/10.1175/WAF-D-19-0159.1
  • Hanoon, M. S., Najah Ahmed, A., Zaini, N., Kumar, P., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2021). Developing machine learning algorithms for meteorological temperature and humidity forecasting at terengganu state in Malaysia. Scientific Reports, 11(1), 18935. https://doi.org/10.1038/s41598-021-96872-w
  • Haykin, S. S. (1999). Neural networks: A comprehensive foundation. Prentice Hall.
  • Horenko, I., Klein, R., Dolaptchiev, S., & Schütte, C. (2008). Automated generation of reduced stochastic weather models i: Simultaneous dimension and model reduction for time series analysis. Multiscale Modeling & Simulation, 6(4), 1125–1145. https://doi.org/10.1137/060670535
  • Hossain, M., Rekabdar, B., Louis, S. J., & Dascalu, S. (2015). Forecasting the weather of nevada: A deep learning approach, in: 2015 international joint conference on neural networks (IJCNN), IEEE. pp. 1–6.
  • Hou, J., Wang, Y., Zhou, J., & Tian, Q. (2022). Prediction of hourly air temperature based on CNN–LSTM. Geomatics, Natural Hazards and Risk, 13(1), 1962–1986. https://doi.org/10.1080/19475705.2022.2102942
  • Kapner, D. J., Cook, T. S., Adelberger, E. G., Gundlach, J. H., Heckel, B. R., Hoyle, C. D., & Swanson, H. E. (2007). Tests of the gravitational inverse-square law below the dark-energy length scale. Physical Review Letters, 98(2), 021101. https://doi.org/10.1103/PhysRevLett.98.021101
  • Kazemi, S. M., Saffarian, M., & Babaiyan, V. (2021). Time series forecasting of air temperature using an intelligent hybrid model of genetic algorithm and neural network. Journal of Industrial and Systems Engineering, 13(3), 1–15. 20.1001.1.17358272.2021.13.3.1.3
  • Khan, M. I., & Maity, R. (2022). Hybrid deep learning approach for multi-step-ahead prediction for daily maximum temperature and heatwaves. Theoretical and Applied Climatology, 149(3-4), 945–963. https://doi.org/10.1007/s00704-022-04103-7
  • Khatibi, R., Ghorbani, M. A., Kashani, M. H., & Kisi, O. (2011). Comparison of three artificial intelligence techniques for discharge routing. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2011.03.007.
  • Kuligowski, R. J., & Barros, A. P. (1998). Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and Forecasting, 13(4), 1194–1204. https://doi.org/10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
  • Lan, L., Lian, Z., & Pan, L. (2010). The effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratings. Applied Ergonomics, 42(1), 29–36. https://doi.org/10.1016/j.apergo.2010.04.003
  • Li, G., & Yang, N. (2022). A hybrid SARIMA-LSTM model for Air temperature forecasting. Advanced Theory and Simulations. A Hybrid SARIMA-LSTM Model for Air Temperature Forecasting, 2200502. https://doi.org/10.1002/adts.202200502
  • Lin, M. L., Tsai, C. H. W., & Chen, C. K. (2021). Daily maximum temperature forecasting in changing climate using a hybrid of multi-dimensional complementary ensemble empirical mode decomposition and radial basis function neural network. Journal of Hydrology: Regional Studies, 38(2021), 100923. https://doi.org/10.1016/j.ejrh.2021.100923
  • Liu, J. N., Hu, Y., He, Y., Chan, P. W., & Lai, L. (2015). Deep neural network modeling for big data weather forecasting, in: Information granularity, Big data, and computational intelligence (pp. 389–408). Springer.
  • Marchuk, G. (2012). Numerical methods in weather prediction. Elsevier.
  • McGovern, A., John Gagne, D., Troutman, N., Brown, R. A., Basara, J., & Williams, J. K. (2011). Using spatiotemporal relational random forests to improve our understanding of severe weather processes. Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(4), 407–429. https://doi.org/10.1002/sam.10128
  • Mcgovern, A., Supinie, T., Gagne, I., Collier, M., Brown, R., Basara, J., & Williams, J. (2010). Understanding severe weather processes through spatiotemporal relational random forests, in: 2010 NASA conference on intelligent data understanding (to appear).
  • Mirarabi, A., Nassery, H. R., Nakhaei, M., Adamowski, J., Akbarzadeh, A. H., & Alijani, F. (2019). Evaluation of datadriven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environmental Earth Sciences, 78(15), 489. https://doi.org/10.1007/s12665-019-8474-y
  • Mittelman, R., Kuipers, B., Savarese, S., & Lee, H. (2014). Structured recurrent temporal restricted boltzmann machines (pp. 1647–1655). International Conference on Machine Learning.
  • Mohsenzadeh Karimi, N., Kisi, O. Porrajabali, M., Rouhani-Nia, M., and Shiri, J. (2018). Evaluation of the support vector machine, random forest and geo-statistical methodologies for predicting long-term air temperature. ISH Journal of Hydraulic Engineering, 26(4), 376–386. https://doi.org/10.1080/09715010.2018.1495583
  • Moriasi, D. A., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2015). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.
  • Moravej, M., Amani, P., & Hosseini-Moghari, S. M. (2020). Groundwater level simulation and forecasting using interior search algorithm-least square support vector regression (ISA-LSSVR). Groundw Sustain Dev, 11, 100447. https://doi.org/10.1016/j.gsd.2020.100447
  • Naganna, S. R., Deka, P. C., Ghorbani, M. A., Biazar, S. M., Al-Ansari, N., & Yaseen, Z. M. (2019). Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water, 11(4), 742. https://doi.org/10.3390/w11040742
  • Nayak, P. C., Rao, V. R. S., & Sudheer, K. P. (2006). Groundwater level forecasting in shallow aquifer using artificial neural network approach. Water Resources Management, 20(1), 77–90. https://doi.org/10.1007/s11269-006-4007-z
  • Radhika, Y., & Shashi, M. (2009). Atmospheric temperature prediction using support vector machines. International Journal of Computer Theory and Engineering, 1, 55. https://doi.org/10.7763/IJCTE.2009.V1.9
  • Rajendra, P., Murthy, K. V. N., Subbarao, A., & Boadeh, R. (2019). Use of ANN models in the prediction of meteorological data. Modeling Earth Systems and Environment, 5(3), 1051–1058. https://doi.org/10.1007/s40808-019-00590-2
  • Rasnopolsky, V. M., & Fox-Rabinovitz, M. S. (2006). Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks, 19(2), 122–134. https://doi.org/10.1016/j.neunet.2006.01.002
  • Richardson, L. F. (2007). Weather prediction by numerical process. Cambridge university press.
  • Roy, D. S. (2020). Forecasting the Air temperature at a weather station using deep neural networks. Procedia Computer Science, 178, 38–46. https://doi.org/10.1016/j.procs.2020.11.005
  • Salcedo-Sanz, S., Deo, R., Carro-Calvo, L., & Saavedra-Moreno, B. (2016). Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms. Theoretical and Applied Climatology, 125(1-2), 13–25. https://doi.org/10.1007/s00704-015-1480-4
  • Sari, Y., Arifin, Y. F., Novitasari, N., & Faisal, M. L. (2022). Deep learning approach using the GRU-LSTM hybrid model for Air temperature prediction on daily basis. International Journal of Intelligent Systems and Applications in Engineering, 10(3), 430–436.
  • Schulte, P. A., Bhattacharya, A., Butler, C. R., Chun, H. K., Jacklitsch, B., Jacobs, T., Kiefer, M., Lincoln, J., Pendergrass, S., Shire, J., et al. (2016). Advancing the framework for considering the effects of climate change on worker safety and health. Journal of Occupational and Environmental Hygiene, 13(11), 847–865. https://doi.org/10.1080/15459624.2016.1179388
  • Shabani, E., Hayati, B., Pishbahar, E., Ghorbani, M. A., & Ghahremanzadeh, M. (2021). A novel approach to predict CO2 emission in the agriculture sector of Iran based on Inclusive Multiple Model. Journal of Cleaner Production, 279(2021), 123708. https://doi.org/10.1016/j.jclepro.2020.123708
  • Singh, V. K., Panda, K., Sagar, A., Al-Ansari, N., Duan, H. F., Paramaguru, P. K., Vishwakarma, D. K., Kumar, A., Kumar, D., Kashya, P. S., Singh, R. M., & Elbeltagi, A. (2022). Novel genetic algorithm (GA) based hybrid machine learning-pedotransfer function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity. Engineering Applications of Computational Fluid Mechanics, 16(1), 1082–1099. doi: 10.1080/19942060.2022.2071994
  • Smith, B. A., McClendon, R. W., & Hoogenboom, G. (2005). An enhanced artificial neural network for air temperature prediction IEC (Prague) 1:7–12.
  • Sutskever, I., Hinton, G. E., & Taylor, G. W. (2009). The recurrent temporal restricted boltzmann machine (pp. 1601–1608). Advances in neural information processing systems.
  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719
  • Voyant, C., Muselli, M., Paoli, C., & Nivet, M. L. (2012). Numerical weather prediction (nwp) and hybrid arma/ann model to predict global radiation. Energy, 39(1), 341–355. https://doi.org/10.1016/j.energy.2012.01.006
  • Xingjian, S., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional lstm network: A machine learning approach for precipitation now casting, in: Advances in neural information processing systems, pp. 802–810.
  • Yakut, E., & Süzülmüş, S. (2020). Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey. Network: Computation in Neural Systems, 31(1-4), 1–36. https://doi.org/10.1080/0954898X.2020.1759833
  • Yang, Q., Lee, C. Y., & Tippett, M. K. (2020). A long short-term memory model for global rapid intensification prediction. Weather and Forecasting, 35(4), 1203–1220. https://doi.org/10.1175/WAF-D-19-0199.1
  • Zhang, G., Band, S. S., Ardabili, S., Chau, K. W., & Mosavi, A. (2022). Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature. Engineering Applications of Computational Fluid Mechanics, 16(1), 713–723. https://doi.org/10.1080/19942060.2022.2043187
  • Zhu, S., Hadzima-Nyarko, M., Gao, A., Wang, F., Wu, J., & Wu, S. (2019). Two hybrid data-driven models for modeling water-air temperature relationship in rivers. Environmental Science and Pollution Research, 26(12), 12622–12630. https://doi.org/10.1007/s11356-019-04716-y