1,108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Two-phase flow modelling by an error-corrected population balance model

& ORCID Icon
Article: 2178512 | Received 28 Nov 2022, Accepted 05 Feb 2023, Published online: 20 Feb 2023

References

  • Ahmadianfar, I., Jamei, M., Karbasi, M., Sharafati, A., & Gharabaghi, B. (2021). A novel boosting ensemble committee-based model for local scour depth around non-uniformly spaced pile groups. Engineering with Computers, 38(4), 3439–3461. https://doi.org/10.1007/s00366-021-01370-2
  • Bai, Z., Peng, Y., & Zhang, J. (2017). Three-dimensional turbulence simulation of flow in a V-shaped stepped spillway. Journal of Hydraulic Engineering, 143(9), 06017011. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001328
  • Bannari, R., Kerdouss, F., Selma, B., Bannari, A., & Proulx, P. (2008). Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns. Computers & Chemical Engineering, 32(12), 3224–3237. https://doi.org/10.1016/j.compchemeng.2008.05.016
  • Bauer, W. J. (1951). The development of the turbulent boundary layer on steep slopes [PhD thesis]. University of Iowa. https://iro.uiowa.edu/esploro/outputs/doctoral/The-Development-of-the-Turbulent-Boundary/9983776921002771. https://doi.org/10.17077/etd.b9f2xp9n
  • Boes, R. M., & Hager, W. H. (2003). Two-phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering, 129(9), 661–670. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(661)
  • Bombardelli, F. A., Meireles, I., & Matos, J. (2011). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263–288. https://doi.org/10.1007/s10652-010-9188-6
  • Castellano, S., Sheibat-Othman, N., Marchisio, D., Buffo, A., & Charton, S. (2018). Description of droplet coalescence and breakup in emulsions through a homogeneous population balance model. Chemical Engineering Journal, 354, 1197–1207. https://doi.org/10.1016/j.cej.2018.07.176
  • Chanson, H. (1993). Self-aerated flows on chutes and spillways. Journal of Hydraulic Engineering, 119(2), 220–243. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(220)
  • Chanson, H., & Toombes, L. (2002). Air–water flows down stepped chutes: Turbulence and flow structure observations. International Journal of Multiphase Flow, 28(11), 1737–1761. https://doi.org/10.1016/S0301-9322(02)00089-7
  • Chen, Q., Dai, G., & Liu, H. (2002). Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. Journal of Hydraulic Engineering, 128(7), 683–688. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(683)
  • Cheng, P., Zhang, J., Gui, N., Yang, X., Tu, J., & Jiang, S. (2022). Numerical investigation of two-phase flow through tube bundles based on the lattice Boltzmann method. Engineering Applications of Computational Fluid Mechanics, 16(1), 1233–1263. https://doi.org/10.1080/19942060.2022.2077835
  • Cheng, X., Chen, Y., & Luo, L. (2006). Numerical simulation of air-water two-phase flow over stepped spillways. Science in China Series E: Technological Sciences, 49(6), 674–684. https://doi.org/10.1007/s10288-006-2029-2
  • Dou, L., Xiao, Y., Cao, J., Wang, R., & Sun, H. (2021). Transient two-phase flow behavior in wellbores and well control analysis for sour gas kick with high H2S content. Engineering Applications of Computational Fluid Mechanics, 15(1), 656–671. https://doi.org/10.1080/19942060.2021.1903559
  • Ehrenberger, R. (1926). Wasserbewegung in steilen Rinnen (Schußtennen): mit besonderer Berücksichtigung der Selbstbelüftung, Hydrogr. Zentralbureau.
  • El Assad, H., Kissi, B., Hassan, R., Angel, P. V. M., Dolores, R. C. M., Chafik, G., & Kacem-Boureau, M. (2021). Numerical modeling of soil erosion with three wall laws at the soil-water interface. Civil Engineering Journal, 7(9), 1546–1556. https://doi.org/10.28991/cej-2021-03091742
  • Felder, S., & Chanson, H. (2008). Turbulence and turbulent length and time scales in skimming flows on a stepped spillway. Dynamic similarity, physical modelling and scale effects. The University of Queensland.
  • Felder, S., & Chanson, H. (2009). Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute. Experiments in Fluids, 47(1), 1–18. https://doi.org/10.1007/s00348-009-0628-3
  • Felder, S., & Chanson, H. (2016). Simple design criterion for residual energy on embankment dam stepped spillways. Journal of Hydraulic Engineering, 142(4). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001107
  • Ghaderi, A., Abbasi, S., Abraham, J., & Azamathulla, H. M. (2020). Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation, 72, 101711. https://doi.org/10.1016/j.flowmeasinst.2020.101711
  • Gulliver, J. S., Thene, J. R., & Rindels, A. J. (1990). Indexing gas transfer in self-aerated flows. Journal of Environmental Engineering, 116(3), 503–523. https://doi.org/10.1061/(ASCE)0733-9372(1990)116:3(503)
  • Güven, A., & Mahmood, A. H. (2021). Numerical investigation of flow characteristics over stepped spillways. Water Supply, 21(3), 1344–1355. https://doi.org/10.2166/ws.2020.283
  • Halbronn, G. (1952). Etude de la mise en régime des écoulements sur les ouvrages à forte pente. La Houille Blanche, 38(3), 347–371. https://doi.org/10.1051/lhb/1952032
  • Hanna, B. N., Dinh, N. T., Youngblood, R. W., & Bolotnov, I. A. (2020). Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD). Progress in Nuclear Energy, 118, 103140. https://doi.org/10.1016/j.pnucene.2019.103140
  • He, J., Hou, Q., Lian, J., Tijsseling, A. S., Bozkus, Z., Laanearu, J., & Lin, L. (2022). Three-dimensional CFD analysis of liquid slug acceleration and impact in a voided pipeline with end orifice. Engineering Applications of Computational Fluid Mechanics, 16(1), 1444–1463. https://doi.org/10.1080/19942060.2022.2095440
  • Hickox, G. (1945). Air entrainment on spillway faces. Civil Engineering, 15(12), 562–563.
  • Imanian, H., & Mohammadian, A. (2019). Numerical simulation of flow over ogee crested spillways under high hydraulic head ratio. Engineering Applications of Computational Fluid Mechanics, 13(1), 983–1000. https://doi.org/10.1080/19942060.2019.1661014
  • Killen, J. M. (1968). The surface characteristics of self aerated flow in steep channels [PhD thesis]. University of Minnesota. https://www.proquest.com/openview/d63a6156364023537653c08122c64504/1?pq-origsite=gscholar&cbl=18750&diss=y
  • Kositgittiwong, D., Chinnarasri, C., & Julien, P. Y. (2013). Numerical simulation of flow velocity profiles along a stepped spillway. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 227(4), 327–335. https://doi.org/10.1177/0954408912472172
  • Kramer, M., & Chanson, H. (2018). Transition flow regime on stepped spillways: Air–water flow characteristics and step-cavity fluctuations. Environmental Fluid Mechanics, 18(4), 947–965. https://doi.org/10.1007/s10652-018-9575-y
  • Kramer, M., & Chanson, H. (2019). Optical flow estimations in aerated spillway flows: Filtering and discussion on sampling parameters. Experimental Thermal and Fluid Science, 103, 318–328. https://doi.org/10.1016/j.expthermflusci.2018.12.002
  • Kramer, M., Chanson, H., & Felder, S. (2019). Can we improve the non-intrusive characterisation of high-velocity air–water flows? Application of LIDAR technology to stepped spillways. Journal of Hydraulic Research, 58(2), 350–362. https://doi.org/10.1080/00221686.2019.1581670
  • Kyriakopoulos, G. L., Aminpour, Y., Yamini, O. A., Movahedi, A., Mousavi, S. H., & Kavianpour, M. R. (2022). Hydraulic performance of Howell–Bunger and butterfly valves used for bottom outlet in large dams under flood hazards. Applied Sciences, 12(21), 10971. https://doi.org/10.3390/app122110971
  • Lane, E. (1939). Entrainment of air in swiftly flowing water. Civil Engineering, 9(2), 88–91.
  • Lei, J., Zhang, J., & Zhang, L. (2021). Numerical simulation study on distribution of bubble in flow near aerator based on CFD-PBM coupled model in tunnel. Mathematical Problems in Engineering, 2021, 1–24. https://doi.org/10.1155/2021/6635856
  • Li, S., & Yang, J. (2022). Modelling of suspended sediment load by Bayesian optimised machine learning methods with seasonal adjustment. Engineering Applications of Computational Fluid Mechanics, 16(1), 1883–1901. https://doi.org/10.1080/19942060.2022.2121944
  • Li, S., Yang, J., & Ansell, A. (2021). Discharge prediction for rectangular sharp-crested weirs by machine learning techniques. Flow Measurement and Instrumentation, 79, 101931. https://doi.org/10.1016/j.flowmeasinst.2021.101931
  • Liu, Z. P., Guo, X. L., Xia, Q. F., Fu, H., Wang, T., & Dong, X. L. (2018). Experimental and numerical investigation of flow in a newly developed vortex drop shaft spillway. Journal of Hydraulic Engineering, 144(5), 04018014. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001444
  • Luo, H., & Svendsen, H. F. (1996). Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE Journal, 42(5), 1225–1233. https://doi.org/10.1002/aic.690420505
  • Morovati, K., Eghbalzadeh, A., & Javan, M. (2016). Numerical investigation of the configuration of the pools on the flow pattern passing over pooled stepped spillway in skimming flow regime. Acta Mechanica, 227(2), 353–366. https://doi.org/10.1007/s00707-015-1444-x
  • Ohtsu, I., Yasuda, Y., & Takahashi, M. (2004). Flow characteristics of skimming flows in stepped channels. Journal of Hydraulic Engineering, 130(9), 860–869. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(860)
  • Raesi, R., & Maddahian, R. (2022). Numerical investigation of air-injected deoiling hydrocyclones using population balance model. Chemical Engineering Science, 248, 117103. https://doi.org/10.1016/j.ces.2021.117103
  • Roushangar, K., Akhgar, S., Salmasi, F., & Shiri, J. (2014). Modeling energy dissipation over stepped spillways using machine learning approaches. Journal of Hydrology, 508, 254–265. https://doi.org/10.1016/j.jhydrol.2013.10.053
  • Roushangar, K., Foroudi, A., & Saneie, M. (2019). Influential parameters on submerged discharge capacity of converging ogee spillways based on experimental study and machine learning-based modeling. Journal of Hydroinformatics, 21(3), 474–492. https://doi.org/10.2166/hydro.2019.120
  • Sarhan, A. R., Naser, J., & Brooks, G. (2016). CFD simulation on influence of suspended solid particles on bubbles’ coalescence rate in flotation cell. International Journal of Mineral Processing, 146, 54–64. https://doi.org/10.1016/j.minpro.2015.11.014
  • Sarhan, A. R., Naser, J., & Brooks, G. (2018a). CFD modeling of bubble column: Influence of physico-chemical properties of the gas/liquid phases properties on bubble formation. Separation and Purification Technology, 201, 130–138. https://doi.org/10.1016/j.seppur.2018.02.037
  • Sarhan, A. R., Naser, J., & Brooks, G. (2018b). Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column. Particuology, 36, 82–95. https://doi.org/10.1016/j.partic.2017.04.011
  • Schlichting, H., & Kestin, J. (2017). Boundary layer theory (9th ed.). Springer Nature.
  • Soo, S. (1956). Statistical properties of momentum transfer in two-phase flow. Chemical Engineering Science, 5(2), 57–67. https://doi.org/10.1016/0009-2509(56)80019-5
  • Straub, L. G., & Anderson, A. G. (1958). Experiments on self-aerated flow in open channels. Journal of the Hydraulics Division, 84(7), 1–35. https://doi.org/10.1061/JYCEAJ.0000261
  • Teng, P., Yang, J., & Pfister, M. (2016). Studies of two-phase flow at a chute aerator with experiments and CFD modelling. Modelling and Simulation in Engineering, 1–11. https://doi.org/10.1155/2016/4729128
  • Valero, D. (2018). On the fluid mechanics of self-aeration in open channel flows. University of Liège.
  • Valero, D., & Bung, D. B. (2015 June 28–July 3). Hybrid investigations of air transport processes in moderately sloped stepped spillway flows. 36th IAHR World Congress, The Hague, the Netherlands.
  • Valero, D., & García-Bartual, R. (2016). Advances in hydroinformatics. Springer.
  • Viitanen, V. M., Sipilä, T., Sánchez-Caja, A., & Siikonen, T. (2020). Compressible two-phase viscous flow investigations of cavitation dynamics for the ITTC standard cavitator. Applied Sciences, 10(19), 6985. https://doi.org/10.3390/app10196985
  • Vinuesa, R., & Brunton, S. L. (2022). Enhancing computational fluid dynamics with machine learning. Nature Computational Science, 2(6), 358–366. https://doi.org/10.1038/s43588-022-00264-7
  • Wan, H., Li, R., Gualtieri, C., Yang, H., & Feng, J. (2017). Numerical simulation of hydrodynamics and reaeration over a stepped spillway by the SPH method. Water, 9(8), 565. https://doi.org/10.3390/w9080565
  • Wang, T., Wang, J., & Jin, Y. (2005). Population balance model for gas−liquid flows: Influence of bubble coalescence and breakup models. Industrial & Engineering Chemistry Research, 44(19), 7540–7549. https://doi.org/10.1021/ie0489002
  • Wood, I. R. (1991). Air entrainment in free-surface flow. CRC Press, Balkema.
  • Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter optimisation for machine learning models based on Bayesian optimisation. Journal of Electronic Science and Technology, 17(1), 81–108. https://doi.org/10.1007/978-1-4842-6579-6_4
  • Xiang, M., & Tu, J. (2016). Modeling air bubble transport in hydraulic jump flows using population balance approach. Journal of Applied Fluid Mechanics, 9(2), 965–973. https://doi.org/10.18869/acadpub.jafm.68.225.22852
  • Yang, J., Teng, P., & Zhang, H. (2019). Experiments and CFD modeling of high-velocity two-phase flows in a large chute aerator facility. Engineering Applications of Computational Fluid Mechanics, 13(1), 48–66. https://doi.org/10.1080/19942060.2018.1552201
  • Zhang, G., & Chanson, H. (2017). Self-aeration in the rapidly-and gradually-varying flow regions of steep smooth and stepped spillways. Environmental Fluid Mechanics, 17(1), 27–46. https://doi.org/10.1007/s10652-015-9442-z
  • Zhao, Y., Akolekar, H. D., Weatheritt, J., Michelassi, V., & Sandberg, R. D. (2020). RANS turbulence model development using CFD-driven machine learning. Journal of Computational Physics, 411, 109413. https://doi.org/10.1016/j.jcp.2020.109413