1,196
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Thermal transport and magnetohydrodynamics flow of generalized Newtonian nanofluid with inherent irreversibility between conduit with slip at the walls

, , , &
Article: 2182364 | Received 19 Oct 2022, Accepted 15 Feb 2023, Published online: 07 Mar 2023

References

  • Ahmad, S., Sheriff, S., Anjum, A., & Farooq, M. (2022). Analysis of hydromagnetically modulated multiple slips motion of hybrid-nanofluid through a converging/diverging moving channel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(4), 1377–1391. https://doi.org/10.1177/09544089211062365
  • Akram, M., Jamshed, W., Goud, B. S., Pasha, A. A., Sajid, T., Rahman, M. M., Arshad, M., & Weera, W. (2022). Irregular heat source impact on Carreau nanofluid flowing via exponential expanding cylinder: A thermal case study. Case Studies in Thermal Engineering, 36, Article 102171. https://doi.org/10.1016/j.csite.2022.102171
  • Aladdin, N. A. L., Bachok, N., & Pop, I. (2021). Boundary layer flow and heat transfer of Cu-Al2O3/water over a moving horizontal slender needle in presence of hydromagnetic and slip effects. International Communications in Heat and Mass Transfer, 123, Article 105213. https://doi.org/10.1016/j.icheatmasstransfer.2021.105213
  • Alrowaili, D., Ahmed, S. E., Elshehabey, H. M., & Ezzeldien, M. (2022). Magnetic radiative buoyancy-driven convection of MWCNTs -C2H6O2 power-law nanofluids in inclined enclosures with wavy walls. Alexandria Engineering Journal, 61(11), 8677–8689. https://doi.org/10.1016/j.aej.2022.01.073
  • Al-Saif, A. S. J. A., & Jasim, A. M. (2019). New analytical study of the effects thermo-diffusion, diffusion-thermo and chemical reaction of viscous fluid on magneto hydrodynamics flow in divergent and convergent channels. Applied Mathematics, 10(4), Article 4. https://doi.org/10.4236/am.2019.104020
  • Alsemiry, R. D., Sayed, H. M., & Amin, N. (2022). Mathematical analysis of Carreau fluid flow and heat transfer within an eccentric catheterized artery. Alexandria Engineering Journal, 61(1), 523–539. https://doi.org/10.1016/j.aej.2021.06.029
  • Asghar, Z., Saif, R. S., & Ali, N. (2022). Investigation of boundary stresses on MHD flow in a convergent/divergent channel: An analytical and numerical study. Alexandria Engineering Journal, 61(6), 4479–4490. https://doi.org/10.1016/j.aej.2021.10.004
  • Baghban, A., Sasanipour, J., Pourfayaz, F., Ahmadi, M. H., Kasaeian, A., Chamkha, A. J., Oztop, H. F., & Chau, K. (2019). Towards experimental and modeling study of heat transfer performance of water- SiO2 nanofluid in quadrangular cross-section channels. Engineering Applications of Computational Fluid Mechanics, 13(1), 453–469. https://doi.org/10.1080/19942060.2019.1599428
  • Banerjee, A., Mahato, S. K., Bhattacharyya, K., & Chamkha, A. J. (2021). Divergent channel flow of Casson fluid and heat transfer with suction/blowing and viscous dissipation: Existence of boundary layer. Partial Differential Equations in Applied Mathematics, 4, Article 100172. https://doi.org/10.1016/j.padiff.2021.100172
  • Bég, O. A., Bég, T., Khan, W. A., & Uddin, M. J. (2022). Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study. Heat Transfer, 51(1), 1040–1061. https://doi.org/10.1002/htj.22341
  • Bejan, A. (1979). A study of entropy generation in fundamental convective heat transfer. Journal of Heat Transfer, 101(4), 718–725. https://doi.org/10.1115/1.3451063
  • Bejan, A. (1980). Second law analysis in heat transfer. Energy, 5(8), 720–732. https://doi.org/10.1016/0360-5442(80)90091-2
  • Bejan, A. (2013). Convection heat transfer. John Wiley & Sons.
  • Bhaskar, K., Sharma, K., & Bhaskar, K. (2022). Cross-diffusion and chemical reaction effects of a MHD nanofluid flow inside a divergent/convergent channel with heat source/sink. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-022-11525-y
  • Bhatti, M. M., Anwar Bég, O., Ellahi, R., Doranehgard, M. H., & Rabiei, F. (2022). Electro-magnetohydrodynamics hybrid nanofluid flow with gold and magnesium oxide nanoparticles through vertical parallel plates. Journal of Magnetism and Magnetic Materials, 564, Article 170136. https://doi.org/10.1016/j.jmmm.2022.170136
  • Bilal, S., & Shah, I. A. (2022). A comprehensive physical insight about thermo physical aspects of Carreau fluid flow over a rotated disk of variable thickness by implementing finite difference approach. Propulsion and Power Research, 11(1), 143–153. https://doi.org/10.1016/j.jppr.2022.03.001
  • Buongiorno, J. (2005). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240–250. https://doi.org/10.1115/1.2150834
  • Casas, F., Alba-Simionesco, C., Lequeux, F., & Montès, H. (2006). Cold drawing of polymers: Plasticity and aging. Journal of Non-Crystalline Solids, 352(42), 5076–5080. https://doi.org/10.1016/j.jnoncrysol.2006.05.034
  • Chen, X., & Jian, Y. (2022). Entropy generation minimization analysis of two immiscible fluids. International Journal of Thermal Sciences, 171, Article 107210. https://doi.org/10.1016/j.ijthermalsci.2021.107210
  • Choi, S. U. S., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab. (ANL). https://www.osti.gov/biblio/196525
  • Daripa, P., & Paşa, G. (2004). An optimal viscosity profile in enhanced oil recovery by polymer flooding. International Journal of Engineering Science, 42(19), 2029–2039. https://doi.org/10.1016/j.ijengsci.2004.07.008
  • Dinarvand, S., Berrehal, H., Pop, I., & Chamkha, A. J. (2022). Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: A development of Jeffery-Hamel problem. International Journal of Numerical Methods for Heat & Fluid Flow, 33(3), 1144–1160. https://doi.org/10.1108/HFF-08-2022-0489
  • Dogonchi, A. S., & Ganji, D. D. (2017). Analytical solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering joule heating effect. Powder Technology, 318, 390–400. https://doi.org/10.1016/j.powtec.2017.06.018
  • Dolui, S., Bhaumik, B., & De, S. (2022). Combined effect of induced magnetic field and thermal radiation on ternary hybrid nanofluid flow through an inclined catheterized artery with multiple stenosis. Chemical Physics Letters, 811, Article 140209. https://doi.org/10.1016/j.cplett.2022.140209
  • Eid, M. R., & Mabood, F. (2021). Thermal analysis of higher-order chemical reactive viscoelastic nanofluids flow in porous media via stretching surface. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(22), 6099–6110. https://doi.org/10.1177/09544062211008481
  • Fenizri, W., Kezzar, M., Sari, M. R., Tabet, I., & Eid, M. R. (2022). New modified decomposition method (DRMA) for solving MHD viscoelastic fluid flow: Comparative study. International Journal of Ambient Energy, 43(1), 3686–3694. https://doi.org/10.1080/01430750.2020.1852114
  • Gahgah, M., Sari, M. R., Kezzar, M., & Eid, M. R. (2020). Duan–Rach modified Adomian decomposition method (DRMA) for viscoelastic fluid flow between nonparallel plane walls. The European Physical Journal Plus, 135(2), 250. https://doi.org/10.1140/epjp/s13360-020-00250-w
  • Garimella, S. M., Anand, M., & Rajagopal, K. R. (2022). Jeffery–Hamel flow of a shear-thinning fluid that mimics the response of viscoplastic materials. International Journal of Non-Linear Mechanics, 144, Article 104084. https://doi.org/10.1016/j.ijnonlinmec.2022.104084
  • Guedri, K., Bashir, T., Abbasi, A., Farooq, W., Khan, S. U., Khan, M. I., Jameel, M., & Galal, A. M. (2022). Hall effects and entropy generation applications for peristaltic flow of modified hybrid nanofluid with electroosmosis phenomenon. Journal of the Indian Chemical Society, 99(9), Article 100614. https://doi.org/10.1016/j.jics.2022.100614
  • Gupta, S., Chauhan, A., & Sasmal, C. (2022). Influence of elastic instability and elastic turbulence on mixed convection of viscoelastic fluids in a lid-driven cavity. International Journal of Heat and Mass Transfer, 186, Article 122469. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122469
  • Hamel, G. (1917). Spiralförmige bewegungen zäher flüssigkeiten. Jahresbericht der Deutschen Mathematiker-Vereinigung, (25), 34–60. http://eudml.org/doc/145468
  • Hamid, M., Usman, M., Ul Haq, R., & Tian, Z. (2021). A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels. Archive of Applied Mechanics, 91(5), 1907–1924. https://doi.org/10.1007/s00419-020-01861-6
  • Harley, C., Momoniat, E., & Rajagopal, K. R. (2018). Reversal of flow of a non-Newtonian fluid in an expanding channel. International Journal of Non-Linear Mechanics, 101, 44–55. https://doi.org/10.1016/j.ijnonlinmec.2018.02.006
  • Hartmann, J. (1937). Hg-dynamics I. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Mathematisk-Fysiske Meddelelser, 15, 1–27.
  • Hashemi-Tilehnoee, M., & Palomo del Barrio, E. (2022). Magneto laminar mixed convection and entropy generation analyses of an impinging slot jet of Al2O3-water and Novec-649. Thermal Science and Engineering Progress, 36, Article 101524. https://doi.org/10.1016/j.tsep.2022.101524
  • Hashim, Rehman, S., Mohamed Tag Eldin, E., Bafakeeh, O. T., & Guedri, K. (2022). Coupled energy and mass transport for non-newtonian nanofluid flow through non-parallel vertical enclosure. Ain Shams Engineering Journal, Article 102023. https://doi.org/10.1016/j.asej.2022.102023
  • Hassan, M., Mebarek-Oudina, F., Faisal, A., Ghafar, A., & Ismail, A. I. (2022). Thermal energy and mass transport of shear thinning fluid under effects of low to high shear rate viscosity. International Journal of Thermofluids, 15, Article 100176. https://doi.org/10.1016/j.ijft.2022.100176
  • Hayat, T., Khan, S. A., & Momani, S. (2022). Finite difference analysis for entropy optimized flow of Casson fluid with thermo diffusion and diffusion-thermo effects. International Journal of Hydrogen Energy, 47(12), 8048–8059. https://doi.org/10.1016/j.ijhydene.2021.12.093
  • Hooper, A., Duffy, B. R., & Moffatt, H. K. (1982). Flow of fluid of non-uniform viscosity in converging and diverging channels. Journal of Fluid Mechanics, 117, 283–304. https://doi.org/10.1017/S0022112082001633
  • Ibrahim, M. G. (2022). Concentration-dependent viscosity effect on magnetonano peristaltic flow of Powell-Eyring fluid in a divergent-convergent channel. International Communications in Heat and Mass Transfer, 134, Article 105987. https://doi.org/10.1016/j.icheatmasstransfer.2022.105987
  • James, D. F., & Roos, C. A. M. (2021). Pressure drop of a Boger fluid in a converging channel. Journal of Non-Newtonian Fluid Mechanics, 293, Article 104557. https://doi.org/10.1016/j.jnnfm.2021.104557
  • Jeevankumar, & Sandeep, N. (2022). A comparative study on heat dispersion in cylindrical slip flow of composite nanofluids. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089221131719
  • Jeffery, G. B. (1915). L. The two-dimensional steady motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 29(172), 455–465. https://doi.org/10.1080/14786440408635327
  • Jing, Q., Xie, Y., & Zhang, D. (2019). Thermal-hydraulic performance and entropy generation of supercritical carbon dioxide in heat exchanger channels with teardrop dimple/protrusion. International Journal of Heat and Mass Transfer, 135, 1082–1096. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.058
  • Johnston, B. M., Johnston, P. R., Corney, S., & Kilpatrick, D. (2004). Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. Journal of Biomechanics, 37(5), 709–720. https://doi.org/10.1016/j.jbiomech.2003.09.016
  • Kato, H., & Shibanuma, H. (1980). Diverging converging flows of dilute polymer solutions: 1st report, pressure distribution and velocity profile. Bulletin of JSME, 23(181), 1140–1147. https://doi.org/10.1299/jsme1958.23.1140
  • Ketchate, C. G. N., Kapen, P. T., Fokwa, D., & Tchuen, G. (2022). Stability analysis of mixed convection in a porous horizontal channel filled with a Newtonian Al2O3/water nanofluid in presence of magnetic field and thermal radiation. Chinese Journal of Physics, 79, 514–530. https://doi.org/10.1016/j.cjph.2022.08.024
  • Khan, U., Ahmed, N., & Tauseef Mohyud-Din, S. (2016). Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chemical Engineering Science, 141, 17–27. https://doi.org/10.1016/j.ces.2015.10.032
  • Khan, U., Mebarek-Oudina, F., Zaib, A., Ishak, A., Abu Bakar, S., Sherif, E.-S. M., & Baleanu, D. (2022). An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces. Waves in Random and Complex Media, 1–14. https://doi.org/10.1080/17455030.2022.2102689
  • Kimathi, M., Habiyaremye, F., & Wainaina, M. (2022). The effect of heat and mass transfer on unsteady MHD nanofluid flow through convergent-divergent channel. International Journal of Fluid Mechanics & Thermal Sciences, 8(1), 10–22. https://doi.org/10.11648/j.ijfmts.20220801.12
  • Kumar, P., Saha, S. K., & Sharma, A. (2022). Entropy generation minimization-based heat transfer and mass transfer study of rectangular packed-bed filled with spherical particles. Fusion Engineering and Design, 184, Article 113295. https://doi.org/10.1016/j.fusengdes.2022.113295
  • Kumar, R. N., Gamaoun, F., Abdulrahman, A., Chohan, J. S., & Gowda, R. J. P. (2022). Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study. International Journal of Modern Physics B, 36(25), 2250170. https://doi.org/10.1142/S0217979222501703
  • Lanjwani, H. B., Chandio, M. S., Anwar, M. I., Shehzad, S. A., & Izadi, M. (2022). MHD laminar boundary layer flow of radiative Fe-Casson nanofluid: Stability analysis of dual solutions. Chinese Journal of Physics, 76, 172–186. https://doi.org/10.1016/j.cjph.2021.10.043
  • Mahdavi, M., Sharifpur, M., Ahmadi, M. H., & Meyer, J. P. (2020). Nanofluid flow and shear layers between two parallel plates: A simulation approach. Engineering Applications of Computational Fluid Mechanics, 14(1), 1536–1545. https://doi.org/10.1080/19942060.2020.1844806
  • Mandal, S., Shit, G. C., Shaw, S., & Makinde, O. D. (2022). Entropy analysis of thermo-solutal stratification of nanofluid flow containing gyrotactic microorganisms over an inclined radiative stretching cylinder. Thermal Science and Engineering Progress, 34, Article 101379. https://doi.org/10.1016/j.tsep.2022.101379
  • Meher, R., & Patel, N. D. (2019). A study on magneto hydrodynamics Jeffery-Hamel flow with heat transfer problem in Eyring-Powell fluid using differential transform method. Journal of Applied Mathematics and Computational Mechanics, 18(3), 57–68. https://doi.org/10.17512/jamcm.2019.3.05
  • Mohyud-Din, S. T., Khan, U., Ahmed, N., & Hassan, S. M. (2015). Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Applied Sciences, 5(4), Article 4. https://doi.org/10.3390/app5041639
  • Motsa, S. S., Sibanda, P., & Marewo, G. T. (2012). On a new analytical method for flow between two inclined walls. Numerical Algorithms, 61(3), 499–514. https://doi.org/10.1007/s11075-012-9545-2
  • Muhammad, T., Waqas, H., Khan, S. A., Ellahi, R., & Sait, S. M. (2021). Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. Journal of Thermal Analysis and Calorimetry, 143(2), 929–944. https://doi.org/10.1007/s10973-020-09459-4
  • Nath, R., & Murugesan, K. (2022). Double diffusive mixed convection in a Cu-Al2O3/water nanofluid filled backward facing step channel with inclined magnetic field and part heating load conditions. Journal of Energy Storage, 47, Article 103664. https://doi.org/10.1016/j.est.2021.103664
  • Onyango, E. R., Kinyanjui, M. N., Kimathi, M., & Uppal, S. M. (2020). Unsteady Jeffrey-Hamel flow in the presence of oblique magnetic field with suction and injection. Applied and Computational Mathematics, 9(1), Article 1. https://doi.org/10.11648/j.acm.20200901.11
  • Peddieson, J., Jr. (1973). Wedge and cone flows of viscoelastic liquids. AIChE Journal, 19(2), 377–379. https://doi.org/10.1002/aic.690190229
  • Qureshi, M. Z. A., Faisal, M., Raza, Q., Ali, B., Botmart, T., Shah, N. A., Qureshi, M. Z. A., Faisal, M., Raza, Q., Ali, B., Botmart, T., & Shah, N. A. (2023). Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material. AIMS Mathematics, 8(1), 633. https://doi.org/10.3934/math.2023030
  • Rana, P., Shukla, N., Gupta, Y., & Pop, I. (2019). Analytical prediction of multiple solutions for MHD Jeffery–Hamel flow and heat transfer utilizing KKL nanofluid model. Physics Letters A, 383(2), 176–185. https://doi.org/10.1016/j.physleta.2018.10.026
  • Rathore, N., & Sandeep, N. (2022a). A modified thermal flux model to examine the enhanced heat transmission in hybrid blood flow through artery: A comparison between Maxwell and Oldroyd-B models. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089221128367
  • Rathore, N., & Sandeep, N. (2022b). A relative study on blood-based cross ferrofluid flow over a stenosis artery. Waves in Random and Complex Media, 1–20. https://doi.org/10.1080/17455030.2022.2134608
  • Raza, Q., Qureshi, M. Z. A., Khan, B. A., Kadhim Hussein, A., Ali, B., Shah, N. A., & Chung, J. D. (2022). Insight into dynamic of mono and hybrid nanofluids subject to binary chemical reaction, activation energy, and magnetic field through the porous surfaces. Mathematics, 10(16), Article 16. https://doi.org/10.3390/math10163013
  • Reddy, Y. D., Mebarek-Oudina, F., Goud, B. S., & Ismail, A. I. (2022). Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium. Arabian Journal for Science and Engineering, 47(12), 16355–16369. https://doi.org/10.1007/s13369-022-06825-2
  • Rehman, S., Hashim, & Ali Shah, S. I. (2022). Numerical simulation for heat and mass transport of non-newtonian Carreau rheological nanofluids through convergent/divergent channels. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/09544062211065688
  • Sadeghy, K., Khabazi, N., & Taghavi, S.-M. (2007). Magnetohydrodynamic (MHD) flows of viscoelastic fluids in converging/diverging channels. International Journal of Engineering Science, 45(11), 923–938. https://doi.org/10.1016/j.ijengsci.2007.05.007
  • Saifi, H., Sari, M. R., Kezzar, M., Ghazvini, M., Sharifpur, M., & Sadeghzadeh, M. (2020). Heat transfer through converging-diverging channels using Adomian decomposition method. Engineering Applications of Computational Fluid Mechanics, 14(1), 1373–1384. https://doi.org/10.1080/19942060.2020.1830857
  • Sarada, S., Gamaoun, F., Abdulrahman, A., Paramesh, S. O., Kumar, R., Prasanna, G. D., & Punith Gowda, R. J. (2022). Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model. Case Studies in Thermal Engineering, 38, Article 102332. https://doi.org/10.1016/j.csite.2022.102332
  • Sari, M. R., Kezzar, M., & Adjabi, R. (2016). Heat transfer of copper/water nanofluid flow through converging-diverging channel. Journal of Central South University, 23(2), 484–496. https://doi.org/10.1007/s11771-016-3094-0
  • Shah, S. A. A., Ahammad, N. A., Ali, B., Guedri, K., Awan, A. U., Gamaoun, F., & Tag-ElDin, E. M. (2022). Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder. International Communications in Heat and Mass Transfer, 137, Article 106299. https://doi.org/10.1016/j.icheatmasstransfer.2022.106299
  • Sobamowo, G., Yinusa, A., & Akinshilo, A. (2020). Homotopy analysis method to MHD-slip flow of an upper-convected Maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium. International Journal of Petrochemical Science & Engineering, 5, 11–20. https://doi.org/10.15406/ipcse.2020.05.00118
  • Song, Y.-Q., Waqas, H., Al-Khaled, K., Farooq, U., Gouadria, S., Imran, M., Khan, S. U., Khan, M. I., Qayyum, S., & Shi, Q.-H. (2022). Aspects of thermal diffusivity and melting phenomenon in Carreau nanofluid flow confined by nonlinear stretching cylinder with convective Marangoni boundary constraints. Mathematics and Computers in Simulation, 195, 138–150. https://doi.org/10.1016/j.matcom.2022.01.001
  • Soumya, D. O., Gireesha, B. J., Venkatesh, P., & Alsulami, M. D. (2022). Effect of NP shapes on Fe3O4 – Ag/kerosene and Fe3O4 – Ag/water hybrid nanofluid flow in suction/injection process with nonlinear-thermal-radiation and slip condition; Hamilton and Crosser’s model. Waves in Random and Complex Media, 1–22. https://doi.org/10.1080/17455030.2021.2022813
  • Turkyilmazoglu, M. (2014). Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels. Computers & Fluids, 100, 196–203. https://doi.org/10.1016/j.compfluid.2014.05.016
  • Turkyilmazoglu, M. (2018). Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. International Journal of Heat and Mass Transfer, 126, 974–979. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.093
  • Turkyilmazoglu, M. (2020). Velocity slip and entropy generation phenomena in thermal transport through metallic porous channel. Journal of Non-Equilibrium Thermodynamics, 45(3), 247–256. https://doi.org/10.1515/jnet-2019-0097
  • Ud Din, I. S., Siddique, I., Ali, R., Jarad, F., Abdal, S., & Hussain, S. (2022). On heat and flow characteristics of Carreau nanofluid and tangent hyperbolic nanofluid across a wedge with slip effects and bioconvection. Case Studies in Thermal Engineering, 39, Article 102390. https://doi.org/10.1016/j.csite.2022.102390
  • Waqas, H., Yasmin, S., Muhammad, T., & Imran, M. (2021). Flow and heat transfer of nanofluid over a permeable cylinder with nonlinear thermal radiation. Journal of Materials Research and Technology, 14, 2579–2585. https://doi.org/10.1016/j.jmrt.2021.07.030
  • Wehinger, G. D., & Scharf, F. (2022). Thermal radiation effects on heat transfer in slender packed-bed reactors: Particle-resolved CFD simulations and 2D modeling. Chemical Engineering Research and Design, 184, 24–38. https://doi.org/10.1016/j.cherd.2022.05.034
  • Zaman, A., Khan, A. A., & Kousar, N. (2022). Simulation of magneto-hydrodynamics effects on cross fluid (blood) model with entropy generations in multiple stenosed (aneurysm) curved channel. Chinese Journal of Physics. https://doi.org/10.1016/j.cjph.2022.10.007