1,097
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of design parameters of upstream Venturi pipeline on multiphase flow measurement

, , , , &
Article: 2182831 | Received 15 Nov 2022, Accepted 15 Feb 2023, Published online: 28 Feb 2023

References

  • Acharya, T., & Casimiro, L. (2020). Evaluation of flow characteristics in an onshore horizontal separator using computational fluid dynamics. Journal of Ocean Engineering and Science, 5(3), 261–268. https://doi.org/10.1016/j.joes.2019.11.005
  • Baker, O. (1953). Design of pipelines for the simultaneous flow of oil and gas. Proceedings of the Fall Meeting of the Petroleum Branch of AIME, 323-32G.
  • Burns, A. D., Frank, T., Hamill, I., & Shi, J.-M. (2004). The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. Proceedings of the 5th International Conference on Multiphase Flow, 392, 1–17.
  • Cokljat, D., Slack, M., Vasquez, S. A., Bakker, A., & Montante, G. (2006). Reynolds-stress model for Eulerian multiphase. Progress in Computational Fluid Dynamics, An International Journal, 6(1-3), 168–178. https://doi.org/10.1504/PCFD.2006.009494
  • Coughtrie, A. R., Borman, D. J., & Sleigh, P. A. (2013). Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester. Bioresource Technology, 138, 297–306. https://doi.org/10.1016/j.biortech.2013.03.162
  • Fiore, M., Xie, C.-G., & Jolivet, G. (2019). Wider salinity range and lower water detection limit for multiphase flowmeters. Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition.
  • Frank, T., Zwart, P. J., Krepper, E., Prasser, H.-M., & Lucas, D. (2008). Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes. Nuclear Engineering and Design, 238(3), 647–659. https://doi.org/10.1016/j.nucengdes.2007.02.056
  • Han, F. H., Liu, Y. X., Ong, M. C., Yin, G., Li, W. H., & Wang, Z. (2022). CFD investigation of blind-tee effects on flow mixing mechanism in subsea pipelines. Engineering Applications of Computational Fluid Mechanics, 16(1), 1395–1419. https://doi.org/10.1080/19942060.2022.2093275
  • Han, F. H., Ong, M. C., Xing, Y. H., & Li, W. H. (2020). Three-dimensional numerical investigation of laminar flow in blind-tee pipes. Ocean Engineering, 217, 107962. https://doi.org/10.1016/j.oceaneng.2020.107962
  • Hjertaker, B. T., Tjugum, S.-A., Hallanger, A., & Maad, R. (2018). Characterization of multiphase flow blind-T mixing using high speed gamma-ray tomometry. Flow Measurement and Instrumentation, 62, 205–212. https://doi.org/10.1016/j.flowmeasinst.2017.10.001
  • Huang, S., Xie, C., Lenn, C., Yang, W., & Wu, Z. (2013). Issues of a combination of ultrasonic Doppler velocity measurement with a Venturi for multiphase flow metering. Proceedings of the 18th Middle East Oil & Gas Show and Conference, 1, 2101–2109.
  • Laleh, A. P., Svrcek, W. Y., & Monnery, W. D. (2011). Computational fluid dynamics simulation of pilot-plant-scale two-phase separators. Chemical Engineering & Technology, 34(2), 296–306. https://doi.org/10.1002/ceat.201000302
  • López, J., Pineda, H., Bello, D., & Ratkovich, N. (2016). Study of liquid-gas two-phase flow in horizontal pipes using high speed filming and computational fluid dynamics. Experimental Thermal and Fluid Science, 76, 126–134. https://doi.org/10.1016/j.expthermflusci.2016.02.013
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Milovan, P., & Stephen, F. (2004). The advantage of polyhedral meshes, CD-adapco.
  • Pinguet, B., Smith, M. T., Vagen, N., Alendal, G. M., Rustad, R., & Xie, C.-G. (2014). An innovative liquid detection sensor for wet gas subsea business to improve gas-condensate flow rate measurement and flow assurance issue. Proceedings of the Offshore Technology Conference Asia, 1, 25054.
  • Razali, M. A. B., Xie, C.-G., & Loh, W. L. (2021). Experimental investigation of gas-liquid flow in a vertical Venturi installed downstream of a horizontal blind tee flow conditioner and the flow regime transition. Flow Measurement and Instrumentation, 80, 101961. https://doi.org/10.1016/j.flowmeasinst.2021.101961
  • Shang, Z., Lou, J., & Li, H. Y. (2015). A new multidimensional drift flux mixture model for gas-liquid droplet two-phase flow. International Journal of Computational Methods, 12(4), 1540001. https://doi.org/10.1142/S0219876215400010
  • Shu, J.-J. (2003a). A finite element model and electronic analogue of pipeline pressure transients with frequency-dependent friction. Journal of Fluids Engineering, 125(1), 194–199. https://doi.org/10.1115/1.1522415
  • Shu, J.-J. (2003b). Modelling vaporous cavitation on fluid transients. International Journal of Pressure Vessels and Piping, 80(3), 187–195. https://doi.org/10.1016/S0308-0161(03)00025-5
  • Shu, J.-J., Burrows, C. R., & Edge, K. A. (1997). Pressure pulsations in reciprocating pump piping systems Part 1: Modelling. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 211(3), 229–237. https://doi.org/10.1243/0959651971539768
  • Shu, J.-J., Teo, J. B. M., & Chan, W. K. (2016). A new model for fluid velocity slip on a solid surface. Soft Matter, 12(40), 8388–8397. https://doi.org/10.1039/C6SM01178K
  • Shu, J.-J., Teo, J. B. M., & Chan, W. K. (2017). Fluid velocity slip and temperature jump at a solid surface. Applied Mechanics Reviews, 69(2), 020801. https://doi.org/10.1115/1.4036191
  • Shu, J.-J., Teo, J. B. M., & Chan, W. K. (2018). Slip of fluid molecules on solid surfaces by surface diffusion. PLoS One, 13(10), e0205443. https://doi.org/10.1371/journal.pone.0205443
  • Shu, J.-J., & Wilks, G. (1995). An accurate numerical method for systems of differentio-integral equations associated with multiphase flow. Computers & Fluids, 24(6), 625–652. https://doi.org/10.1016/0045-7930(95)00012-2
  • Tomiyama, A., Kataoka, I., Zun, I., & Sakaguchi, T. (1998). Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B, 41(2), 472–479. https://doi.org/10.1299/jsmeb.41.472
  • Tomiyama, A., Tamai, H., Zun, I., & Hosokawa, S. (2002). Transverse migration of single bubbles in simple shear flows. Chemical Engineering Science, 57(11), 1849–1858. https://doi.org/10.1016/S0009-2509(02)00085-4
  • Wilcox, D. C. (1997). Turbulence Modeling for CFD (second edition). D C W Industries.
  • Yamoah, S., Martínez-Cuenca, R., Monrós, G., Chiva, S., & Macián-Juan, R. (2015). Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow. Chemical Engineering Research and Design, 98, 17–35. https://doi.org/10.1016/j.cherd.2015.04.007
  • Zeghloul, A., Azzi, A., Saidj, F., Azzopardi, B. J., & Hewakandamby, B. (2015). Interrogating the effect of an orifice on the upward two-phase gas-liquid flow behavior. International Journal of Multiphase Flow, 74, 96–105. https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.013
  • Zhan, M. K., Xie, C.-G., & Shu, J.-J. (2022). Microwave probe sensing location for Venturi-based real-time multiphase flowmeter. Journal of Petroleum Science and Engineering, 218, 111027. https://doi.org/10.1016/j.petrol.2022.111027
  • Zhang, W. W., Yu, Z. Y., & Li, Y. J. (2019). Application of a non-uniform bubble model in a multiphase rotodynamic pump. Journal of Petroleum Science and Engineering, 173, 1316–1322. https://doi.org/10.1016/j.petrol.2018.10.107