1,349
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical investigation on optimization of foaming performance of the kenics static mixer in compressed air foam system

, , , &
Article: 2183260 | Received 01 Dec 2022, Accepted 17 Feb 2023, Published online: 01 Mar 2023

References

  • Bera, A., Mandal, A., Belhaj, H., & Kumar, T. (2017). Enhanced oil recovery by nonionic surfactants considering micellization, surface, and foaming properties. Petroleum Science, 14(2), 362–371. https://doi.org/10.1007/s12182-017-0156-3
  • Cao, Z., Song, C., Gao, X., Zhang, X., Zhang, F., & Liu, B. (2022). Effects of pulsed endwall air injection on corner separation and vortical flow of a compressor cascade. Engineering Applications of Computational Fluid Mechanics, 16(1), 879–903. https://doi.org/10.1080/19942060.2022.2046643
  • Chen, P., Duduković, M., & Sanyal, J. (2005). Three-dimensional simulation of bubble column flows with bubble coalescence and breakup. AIChE Journal, 51(3), 696–712. https://doi.org/10.1002/aic.10381
  • Christafakis, A. N., & Tsangaris, S. (2008). Two-phase flows of droplets in contractions and double bends. Engineering Applications of Computational Fluid Mechanics, 2(3), 299–308. https://doi.org/10.1080/19942060.2008.11015230
  • Chu, P., Finch, J., Bournival, G., Ata, S., Hamlett, C., & Pugh, R. J. (2019). A review of bubble break-up. Advances in Colloid and Interface Science, 270(270), 108–122. https://doi.org/10.1016/j.cis.2019.05.010
  • Deane, G. B., & Stokes, M. D. (2002). Scale dependence of bubble creation mechanisms in breaking waves. Nature, 418(6900), 839–844. https://doi.org/10.1038/nature00967
  • Drenckhan, W., & Saint-Jalmes, A. (2015). The science of foaming. Advances in Colloid and Interface Science, 222, 228–259. https://doi.org/10.1016/j.cis.2015.04.001
  • Gaillard, T., Honorez, C., Jumeau, M., Elias, F., & Drenckhan, W. (2015). A simple technique for the automation of bubble size measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 473, 68–74. https://doi.org/10.1016/j.colsurfa.2015.01.089
  • Harding, B., Zhang, B., Liu, Y., Chen, H., & Mannan, M. S. (2016). Improved research-scale foam generator design and performance characterization. Journal of Loss Prevention in the Process Industries, 39, 173–180. https://doi.org/10.1016/j.jlp.2015.11.016
  • Hobbs, D., & Muzzio, F. (1997). The kenics static mixer: A three-dimensional chaotic flow. Chemical Engineering Journal, 67(3), 153–166. https://doi.org/10.1016/S1385-8947(97)00013-2
  • Hobbs, D., & Muzzio, F. (1998). Optimization of a static mixer using dynamical systems techniques. Chemical Engineering Science, 53(18), 3199–3213. https://doi.org/10.1016/S0009-2509(98)00115-8
  • Hosni, M., Hammoudi, M. H., Si-Ahmed, E. K., Legrand, J., & Douib, L. (2023). Single and two-phase flows in a horizontal pipe with a kenics static mixer: Effect of pressure drop on mixing. The Canadian Journal of Chemical Engineering, 101(2), 828–844. https://doi.org/10.1002/cjce.24402
  • Jiang, X., Xiao, Z., Jiang, J., Yang, X., & Wang, R. (2021). Effect of element thickness on the pressure drop in the kenics static mixer. Chemical Engineering Journal, 424, 130399. https://doi.org/10.1016/j.cej.2021.130399
  • Jiang, Z., Li, W., Liu, X., Li, B., & Liu, L. (2019). Experimental study of the effects of a Low-expansion foam generator structure on the foaming quality. 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE), 2019.10.18-2019.10.20, https://doi.org/10.1109/icfsfpe48751.2019.9055765.
  • Krishna, R., Van Baten, J., Urseanu, M., & Ellenberger, J. (2001). A scale up strategy for bubble column slurry reactors. Catalysis Today, 66(2-4), 199–207. https://doi.org/10.1016/S0920-5861(00)00641-6
  • Kumar, V., Shirke, V., & Nigam, K. (2008). Performance of kenics static mixer over a wide range of Reynolds number. Chemical Engineering Journal, 139(2), 284–295. https://doi.org/10.1016/j.cej.2007.07.101
  • Laundess, A. J., Rayson, M. S., Dlugogorski, B. Z., & Kennedy, E. M. (2011). Small-scale test protocol for firefighting foams DEF (AUST) 5706: Effect of bubble size distribution and expansion ratio. Fire Technology, 47(1), 149–162. https://doi.org/10.1007/s10694-009-0136-2
  • Laundess, A. J., Rayson, M. S., Dlugogorski, B. Z., & Kennedy, E. M. (2012). Suppression performance comparison for aspirated, compressed-air and in situ chemically generated class B foams. Fire Technology, 48(3), 625–640. https://doi.org/10.1007/s10694-010-0155-z
  • Liu, Y., Jing, M., Xu, R., Luan, X., Jiang, J., & Zhang, B. (2022). Study of key properties of expansion foam for process safety incident mitigation using an improved foam generator. Journal of Loss Prevention in the Process Industries, 74, 104661. https://doi.org/10.1016/j.jlp.2021.104661
  • Lu, X., Wang, D., Shen, W., Wang, H., Zhu, C., & Liu, J. (2015). Experimental investigation of the pressure gradient of a new spiral mesh foam generator. Process Safety and Environmental Protection, 94, 44–54. https://doi.org/10.1016/j.psep.2014.12.002
  • Magrabi, S., Dlugogorski, B. Z., & Jameson, G. (2002). A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams. Fire Safety Journal, 37(1), 21–52. https://doi.org/10.1016/S0379-7112(01)00024-8
  • Panchigar, D., Kar, K., Shukla, S., Mathew, R. M., Chadha, U., & Selvaraj, S. K. (2022). Machine learning-based CFD simulations: A review, models, open threats, and future tactics. Neural Computing and Applications, 34(24), 21677–21700. https://doi.org/10.1007/s00521-022-07838-6
  • Parikh, D. (2017). Experimental study of pressure drop and bubble size in a laboratory scale compressed air foam generation system. Colorado School of Mines.
  • Rand, P. B., & Kraynik, A. M. (1983). Drainage of aqueous foams: Generation-pressure and cell-size effects. Society of Petroleum Engineers Journal, 23(01), 152–154. https://doi.org/10.2118/10533-PA
  • Sarma, D. S. R., & Khilar, K. C. (1988). Effects of initial gas volume fraction on stability of aqueous air foams. Industrial & Engineering Chemistry Research, 27(5), 892–894. https://doi.org/10.1021/ie00077a029
  • Sarmiento-Laurel, C., Cardemil, J. M., & Calderón-Muñoz, W. R. (2022). Local entropy generation model for numerical CFD analysis of fluid flows through porous media, under laminar and turbulent regimes. Engineering Applications of Computational Fluid Mechanics, 16(1), 804–825. https://doi.org/10.1080/19942060.2022.2040595
  • Sheng, Y., Lu, S., Jiang, N., Wu, X., & Li, C. (2018). Drainage of aqueous film-forming foam stabilized by different foam stabilizers. Journal of Dispersion Science and Technology, 39(9), 1266–1273. https://doi.org/10.1080/01932691.2017.1393432
  • Song, H.-S., & Han, S. P. (2005). A general correlation for pressure drop in a kenics static mixer. Chemical Engineering Science, 60(21), 5696–5704. https://doi.org/10.1016/j.ces.2005.04.084
  • Souidi, K., Mardaru, A., Roudet, M., Marcati, A., Della Valle, D., & Djelveh, G. (2012). Effect of impellers configuration on the gas dispersion in high-viscosity fluid using narrow annular gap unit. Part 1: Experimental approach. Chemical Engineering Science, 74, 287–295. https://doi.org/10.1016/j.ces.2012.02.055
  • Stec, M., & Synowiec, P. M. (2017). Study of fluid dynamic conditions in the selected static mixers part I—research of pressure drop. The Canadian journal of chemical engineering, 95(11), 2156–2167. https://doi.org/10.1002/cjce.22929
  • Stec, M., & Synowiec, P. M. (2019). Study of fluid dynamic conditions in the selected static mixers part III—research of mixture homogeneity. The Canadian Journal of Chemical Engineering, 97(4), 995–1007. https://doi.org/10.1002/cjce.23290
  • Stoffel, M., Wahl, S., Lorenceau, E., Höhler, R., Mercier, B., & Angelescu, D. E. (2012). Bubble production mechanism in a microfluidic foam generator. Physical Review Letters, 108(19), 198302. https://doi.org/10.1103/PhysRevLett.108.198302
  • Szalai, E., & Muzzio, F. (2003). Fundamental approach to the design and optimization of static mixers. AIChE Journal, 49(11), 2687–2699. https://doi.org/10.1002/aic.690491103
  • Van Baten, J., & Krishna, R. (2003). Comparison of hydrodynamics and mass transfer in airlift and bubble column reactors using CFD. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 26(10), 1074–1079. https://doi.org/10.1002/ceat.200301796
  • Wang, H., Wang, D., Tang, Y., Qin, B., & Xin, H. (2014). Experimental investigation of the performance of a novel foam generator for dust suppression in underground coal mines. Advanced Powder Technology, 25(3), 1053–1059. https://doi.org/10.1016/j.apt.2014.02.011
  • Wang, H. T., Wang, D. M., & Ren, W. X. (2012). Computer simulation on key structure parameters of foam generator for dust control in underground coal mines. Advanced Materials Research, 466, 421–424. http://doi.org/10.4028/www.scientific.net/amr.466-467.421
  • Wang, L., Jia, Y., Yan, X., & Zhou, C. (2015). Gas–liquid numerical simulation on micro-bubble generator and optimization on the nozzle-to-throat spacing. Asia-Pacific Journal of Chemical Engineering, 10(6), 893–903. https://doi.org/10.1002/apj.1926
  • Wang, X., Ma, X., Hu, Z., & Sun, S. (2022). Multi-Parameter Optimization of Heat Dissipation Structure of Double Disk Magnetic Coupler Based on Orthogonal Experimental Design. Energies, 15(23), 8801. https://doi.org/10.3390/en15238801
  • Xiao, J., Chen, Z., Shen, X., Jiang, C., & Lu, P. (2019). Orthogonal experiments on the key structural parameters optimization of mine dust removal foam generator by fluent numerical simulation. IOP Conference Series: Earth and Environmental Science, 218(1), 12115. https://doi.org/10.1088/1755-1315/218/1/012115
  • Yu, X., Qiu, K., Li, H., Miao, X., Wang, J., Li, Q., & Lu, S. (2023). Interfacial and rheological properties of long-lived foams stabilized by rice proteins complexed to transition metal ions in the presence of alkyl polyglycoside. Journal of Colloid and Interface Science, 630, 645–657. https://doi.org/10.1016/j.jcis.2022.10.126
  • Yu, X., Qiu, K., Yu, X., Li, Q., Zong, R., & Lu, S. (2022). Stability and thinning behaviour of aqueous foam films containing fluorocarbon and hydrocarbon surfactant mixtures. Journal of Molecular Liquids, 359, 119225. https://doi.org/10.1016/j.molliq.2022.119225