1,105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A computational study of 3D flow structure in two consecutive bends subject to the influence of tributary inflow in the middle Yangtze River

, , , , &
Article: 2183901 | Received 04 Nov 2022, Accepted 19 Feb 2023, Published online: 02 Mar 2023

References

  • Ashby, S. F., Manteuffel, T. A., & Saylor, P. E. (1990). A taxonomy for conjugate gradient methods. SIAM Journal on Numerical Analysis, 27(6), 1542–1568. https://doi.org/10.1137/0727091
  • Azarisamani, A., Keshavarzi, A., Hamidifar, H., & Javan, M. (2020). Effect of rigid vegetation on velocity distribution and bed topography in a meandering river with a sloping bank. Arabian Journal for Science and Engineering, 45(10), 8633–8653. https://doi.org/10.1007/s13369-020-04818-7
  • Bai, Y., & Wang, X. (2017). Theoretical bend-flow solutions and velocity-dip phenomenon. Journal of Hydraulic Research, 55(3), 338–348. https://doi.org/10.1080/00221686.2016.1250830
  • Baker, N., Kelly, G., & O’Sullivan, P. D. (2020). A grid convergence index study of mesh style effect on the accuracy of the numerical results for an indoor airflow profile. International Journal of Ventilation, 19(4), 300–314. https://doi.org/10.1080/14733315.2019.1667558
  • Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., & Van der Vorst, H. (1994). Templates for the solution of linear systems: Building blocks for iterative methods. SIAM.
  • Bathurst, J. C., Hey, R. D., & Thorne, C. R. (1979). Secondary flow and shear stress at River Bends. Journal of the Hydraulics Division, 105(10), 1277–1295. https://doi.org/10.1061/JYCEAJ.0005285
  • Blanckaert, K. (2011). Hydrodynamic processes in sharp meander bends and Their morphological implications. Journal of Geophysical Research: Earth Surface, 116(F1). https://doi.org/10.1029/2010JF001806
  • Blanckaert, K. (2015). Flow separation at convex banks in open channels. Journal of Fluid Mechanics, 779, 432–467. https://doi.org/10.1017/jfm.2015.397
  • Blanckaert, K., Kleinhans, M. G., McLelland, S. J., Uijttewaal, W. S., Murphy, B. J., van de Kruijs, A., Parsons, D. R., & Chen, Q. (2013). Flow separation at the inner (convex) and outer (concave) banks of constant-width and widening open-channel bends. Earth Surface Processes and Landforms, 38(7), 696–716. https://doi.org/10.1002/esp.3324
  • Bombardelli, F. A., Meireles, I., & Matos, J. (2011). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263–288. https://doi.org/10.1007/s10652-010-9188-6
  • Chen, Y., Bao, J., Fang, Y., Perkins, W. A., Ren, H., Song, X., Duan, Z., Hou, Z., He, X., & Scheibe, T. D. (2022). Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5. X. Geoscientific Model Development, 15(7), 2917–2947. https://doi.org/10.5194/gmd-15-2917-2022
  • Deng, S., Xia, J., Zhou, M., Li, Z., Duan, G., Shen, J., & Blanckaert, K. (2021). Secondary flow and flow redistribution in two sharp bends on the Middle Yangtze River. Water Resources Research, 57(10), e2020WR028534. https://doi.org/10.1029/2020WR028534
  • Eça, L., & Hoekstra, M. (2014). A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. Journal of Computational Physics, 262, 104–130. https://doi.org/10.1016/j.jcp.2014.01.006
  • Engel, F. L., & Rhoads, B. L. (2016). Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend. Earth Surface Processes and Landforms, 41(9), 1211–1226. https://doi.org/10.1002/esp.3895
  • Engel, F. L., & Rhoads, B. L. (2017). Velocity profiles and the structure of turbulence at the outer bank of a compound meander bend. Geomorphology, 295, 191–201. https://doi.org/10.1016/j.geomorph.2017.06.018
  • Esfahani, F. S., & Keshavarzi, A. (2011). Effect of different meander curvatures on spatial variation of coherent turbulent flow structure Inside ingoing multi-bend river meanders. Stochastic Environmental Research and Risk Assessment, 25(7), 913–928. https://doi.org/10.1007/s00477-011-0506-4
  • Esfahani, F. S., & Keshavarzi, A. (2020). Circulation cells topology and Their effect on migration pattern of different multi-bend meandering rivers. International Journal of Sediment Research, 35(6), 636–650. https://doi.org/10.1016/j.ijsrc.2020.04.004
  • Ferguson, R. I., Parsons, D. R., Lane, S. N., & Hardy, R. J. (2003). Flow in meander bends with recirculation at the inner bank. Water Resources Research, 39(11), 11. https://doi.org/10.1029/2003WR001965
  • Francis, J. B. (1878). On the cause of the maximum velocity of water flowing in open channels being below the surface. Transactions of the American Society of Civil Engineers, 7(1), 109–113. https://doi.org/10.1061/TACEAT.0000315
  • Gharabaghi, B., Inkratas, C., Beltaos, S., & Krishnappan, B. (2007). Modelling of three-dimensional flow velocities in a deep hole in the East Channel of the Mackenzie Delta, Northwest Territories. Canadian Journal of Civil Engineering, 34(10), 1312–1323. https://doi.org/10.1139/l07-054
  • Gholami, A., Akbar Akhtari, A., Minatour, Y., Bonakdari, H., & Javadi, A. A. (2014). Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90 open channel bend. Engineering Applications of Computational Fluid Mechanics, 8(3), 447–461. https://doi.org/10.1080/19942060.2014.11015528
  • Gholami, A., Bonakdari, H., Zaji, A. H., & Akhtari, A. A. (2015). Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks. Engineering Applications of Computational Fluid Mechanics, 9(1), 355–369. https://doi.org/10.1080/19942060.2015.1033808
  • Herrero, H. S., Lozada, J. M. D., García, C. M., Szupiany, R. N., Best, J., & Pagot, M. (2018). The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing. Geomorphology, 304, 99–112. https://doi.org/10.1016/j.geomorph.2017.12.025
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Hirt, C. W., & Sicilian, J. M. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. In International Conference on Numerical Ship Hydrodynamics, 4th, Washington, DC, September 24-27.
  • Hu, C., Yu, M., Wei, H., & Liu, C. (2019). The mechanisms of energy transformation in sharp open-channel bends: Analysis based on experiments in a laboratory flume. Journal of Hydrology, 571, 723–739. https://doi.org/10.1016/j.jhydrol.2019.01.074
  • Jia, Y. Y., Yao, Z. D., Duan, H. F., Wang, X. K., & Yan, X. F. (2022). Numerical assessment of canopy blocking effect on partly-obstructed channel flows: From perturbations to vortices. Engineering Applications of Computational Fluid Mechanics, 16(1), 1761–1780. https://doi.org/10.1080/19942060.2022.2109757
  • Kang, S., Lightbody, A., Hill, C., & Sotiropoulos, F. (2011). High-resolution numerical simulation of turbulence in natural waterways. Advances in Water Resources, 34(1), 98–113. https://doi.org/10.1016/j.advwatres.2010.09.018
  • Kasvi, E., Vaaja, M., Kaartinen, H., Kukko, A., Jaakkola, A., Flener, C., Hyyppä, H., Hyyppä, J., & Alho, P. (2015). Sub-bend scale flow-sediment interaction of meander bends—A combined approach of field observations, close-range remote sensing and computational modelling. Geomorphology, 238, 119–134. https://doi.org/10.1016/j.geomorph.2015.01.039
  • Khayrullina, A., van Hooff, T., Blocken, B., & van Heijst, G. (2019). Validation of steady RANS modelling of isothermal plane turbulent impinging jets at moderate Reynolds numbers. European Journal of Mechanics - B/Fluids, 75, 228–243. https://doi.org/10.1016/j.euromechflu.2018.10.003
  • Konsoer, K. M., Rhoads, B. L., Best, J. L., Langendoen, E. J., Abad, J. D., Parsons, D. R., & Garcia, M. H. (2016). Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics. Water Resources Research, 52(12), 9621–9641. https://doi.org/10.1002/2016WR019040
  • Kranenburg, W. M., Geyer, W. R., Garcia, A. M. P., & Ralston, D. K. (2019). Reversed lateral circulation in a sharp estuarine bend with weak stratification. Journal of Physical Oceanography, 49(6), 1619–1637. https://doi.org/10.1175/JPO-D-18-0175.1
  • Leeder, M. R., & Bridges, P. H. (1975). Flow separation in meander bends. Nature, 253(5490), 338–339. https://doi.org/10.1038/253338a0
  • Lien, H., Hsieh, T., Yang, J., & Yeh, K. C. (1999). Bend-flow simulation using 2D depth-averaged model. Journal of Hydraulic Engineering, 125(10), 1097–1108. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097)
  • Liu, T. H., Wang, Y. K., Wang, X. K., Duan, H. F., & Yan, X. F. (2020). Morphological environment survey and hydrodynamic modeling of a large bifurcation-confluence complex in Yangtze River, China. Science of the Total Environment, 737, 139705. https://doi.org/10.1016/j.scitotenv.2020.139705
  • Mahananda, M. M., Hanmaiahgari, P. R., Ojha, C. S. P., & Balachandar, R. (2019). A new analytical model for dip modified velocity distribution in fully developed turbulent open channel flow. Canadian Journal of Civil Engineering, 46(8), 657–668. https://doi.org/10.1139/cjce-2018-0615
  • Mignot, E., & Brevis, W. (2020). Coherent turbulent structures within open-channel lateral cavities. Journal of Hydraulic Engineering, 146(2), 04019066. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001698
  • Moncho-Esteve, I. J., García-Villalba, M., Muto, Y., Shiono, K., & Palau-Salvador, G. (2018). A numerical study of the complex flow structure in a compound meandering channel. Advances in Water Resources, 116, 95–116. https://doi.org/10.1016/j.advwatres.2018.03.013
  • Mossa, J., & Chen, Y.-H. (2021). Geomorphic insights from eroding dredge spoil mounds impacting channel morphology. Geomorphology, 376, 107571. https://doi.org/10.1016/j.geomorph.2020.107571
  • Nicholas, A., & Sambrook Smith, G. (1999). Numerical simulation of three-dimensional flow hydraulics in a braided channel. Hydrological Processes, 13(6), 913–929. https://doi.org/10.1002/(SICI)1099-1085(19990430)13:6<913::AID-HYP764>3.0.CO;2-N
  • Pan, Y., Liu, X., & Yang, K. (2022). Effects of discharge on the velocity distribution and riverbed evolution in a meandering channel. Journal of Hydrology, 607, 127539. https://doi.org/10.1016/j.jhydrol.2022.127539
  • Rao, P. L., Prasad, B. S. S., Sharma, A., & Khatua, K. K. (2022). Experimental and numerical analysis of velocity distribution in a compound meandering channel with double layered rigid vegetated flood plains. Flow Measurement and Instrumentation, 102111. https://doi.org/10.1016/j.flowmeasinst.2021.102111
  • Riley, J. D., & Rhoads, B. L. (2012). Flow structure and channel morphology at a natural confluent meander bend. Geomorphology, 163, 84–98. https://doi.org/10.1016/j.geomorph.2011.06.011
  • Riley, J. D., Rhoads, B. L., Parsons, D. R., & Johnson, K. K. (2015). Influence of junction angle on three-dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions. Earth Surface Processes and Landforms, 40(2), 252–271. https://doi.org/10.1002/esp.3624
  • Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1), 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123
  • Rodriguez, J. F., Bombardelli, F. A., García, M. H., Frothingham, K. M., Rhoads, B. L., & Abad, J. D. (2004). High-resolution numerical simulation of flow through a highly sinuous river reach. Water Resources Management, 18(3), 177–199. https://doi.org/10.1023/B:WARM.0000043137.52125.a0
  • Russell, P., & Vennell, R. (2019). High resolution observations of an outer-bank cell of secondary circulation in a natural river bend. Journal of Hydraulic Engineering, 145(5), 04019012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001584
  • Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.
  • Shaheed, R., Mohammadian, A., & Yan, X. (2021). A review of numerical simulations of secondary flows in River Bends. Water, 13(7), 884. https://doi.org/10.3390/w13070884
  • Shakibainia, A., Tabatabai, M. R. M., & Zarrati, A. R. (2010). Three-dimensional numerical study of flow structure in channel confluences. Canadian Journal of Civil Engineering, 37(5), 772–781. https://doi.org/10.1139/L10-016
  • Shukry, A. (1950). Flow around bends in an open flume. Transactions of the American Society of Civil Engineers, 115(1), 751–778. https://doi.org/10.1061/TACEAT.0006426
  • Song, X., Huang, H., Chen, Y., Xu, H., & Bai, Y. (2022). Effective simulation of flow in a moderately curved bend with a single short branch to support the design optimisation of river-branch-plant configurations. Engineering Applications of Computational Fluid Mechanics, 16(1), 1420–1443. https://doi.org/10.1080/19942060.2022.2093276
  • Stoesser, T., Ruether, N., & Olsen, N. R. B. (2010). Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Advances in Water Resources, 33(2), 158–170. https://doi.org/10.1016/j.advwatres.2009.11.001
  • Thorne, C. R., Zevenbergen, L. W., Pitlick, J. C., Rais, S., Bradley, J. B., & Julien, P. Y. (1985). Direct measurements of secondary currents in a meandering sand-bed river. Nature, 315(6022), 746–747. https://doi.org/10.1038/315746a0
  • Vaghefi, M., Akbari, M., & Fiouz, A. R. (2016). An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: Secondary flow and bed shear stress. KSCE Journal of Civil Engineering, 20(4), 1582–1593. https://doi.org/10.1007/s12205-015-1560-0
  • Vermeulen, B., Hoitink, A., & Labeur, R. (2015). Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend. Journal of Geophysical Research: Earth Surface, 120(9), 1771–1783. https://doi.org/10.1002/2014JF003334
  • Wang, H., Yao, S., Lu, Y., Zuo, L., Liu, H., & Zhao, Z. (2022). Morphological changes of sharp bends in response to three gorges project operation at different discharges. Frontiers in Earth Science, 10, 876631. https://doi.org/10.3389/feart.2022.876631
  • Wang, M., Avital, E., Korakianitis, T., Williams, J., & Ai, K. (2021). A numerical study on the influence of curvature ratio and vegetation density on a partially vegetated U-bend channel flow. Advances in Water Resources, 148, 103843. https://doi.org/10.1016/j.advwatres.2020.103843
  • Wang, X., Yan, Z., & Guo, W. (2007). Three-dimensional simulation for effects of bed discordance on flow dynamics at Y-shaped open channel confluences. Journal of Hydrodynamics, 19(5), 587–593. https://doi.org/10.1016/S1001-6058(07)60157-7
  • Yan, X., Rennie, C. D., & Mohammadian, A. (2020). A three-dimensional numerical study of flow characteristics in strongly curved channel bends with different side slopes. Environmental Fluid Mechanics, 20(6), 1491–1510. https://doi.org/10.1007/s10652-020-09751-9
  • Yan, X. F., Jia, Y. Y., Zhang, Y., Fang, L. B., Duan, H. F., & Wang, X. K. (2022). Hydrodynamic adjustment subject to a submerged canopy partially obstructing a flume: Implications for junction flow behavior. Ecohydrology, e2467. https://doi.org/10.1002/eco.2467
  • Yang, S. Q., Tan, S. K., & Lim, S. Y. (2004). Velocity distribution and dip-phenomenon in smooth uniform open channel flows. Journal of Hydraulic Engineering, 130(12), 1179–1186. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:12(1179)