1,430
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hydrodynamic performance of a rim-driven thruster improved with gap geometry adjustment

ORCID Icon, ORCID Icon, ORCID Icon, &
Article: 2183902 | Received 18 Nov 2022, Accepted 19 Feb 2023, Published online: 13 Mar 2023

References

  • Baltazar, J., Falcão de Campos, J. A. C., & Bosschers, J. (2012). Open-water thrust and torque predictions of a ducted propeller system with a panel method. International Journal of Rotating Machinery, 2012, 1–11. https://doi.org/10.1155/2012/474785
  • Cao, Q., Hong, F., Tang, D., Hu, F., & Lu, L. (2012). Prediction of loading distribution and hydrodynamic measurements for propeller blades in a rim driven thruster. Journal of Hydrodynamics, 24(1), 50–57. https://doi.org/10.1016/S1001-6058(11)60218-7
  • Cao, Q., Wei, X., Tang, D., & Hong, F. (2014). Study of gap flow effects on performance of rim driver thrusters. In Proceedings of the 13th National Conference on Hydrodynamics and the 26th National Symposium on Hydrodynamics, Tsingtao, China, 1197–1206.
  • Celik, I. B., Ghia, U., Roache, P. J., & Freitas, C. J. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), 078001. https://doi.org/10.1115/1.2960953
  • Dubas, A. J., Bressloff, N. W., & Sharkh, S. M. (2015). Numerical modelling of rotor–stator interaction in rim driven thrusters. Ocean Engineering, 106, 281–288. https://doi.org/10.1016/j.oceaneng.2015.07.012
  • Gaggero, S. (2020). Numerical design of a RIM-driven thruster using a RANS-based optimization approach. Applied Ocean Research, 94, 101941. https://doi.org/10.1016/j.apor.2019.101941
  • Grümmer, H., Harries, S., & Hochbaum, A. C. (2017, June). Simulation-driven Design of a Rim Drive for an Autonomous Vehicle. In Fifth International Symposium on Marine Propulsors, Espoo, Finland.
  • Grűmmer, H. (2016). Design and Optimization of a Hubless rim-driven Thruster for an Autonomous Surface Vehicle using RANSE Simulation (Doctoral dissertation, MS Dissertation, Department of Dynamics of Maritime Systems, Technical University of Berlin, German).
  • Hu, J., Yan, Q., Ding, J., & Sun, S. (2022). Numerical study on transient four-quadrant hydrodynamic performance of cycloidal propellers. Engineering Applications of Computational Fluid Mechanics, 16(1), 1813–1832. https://doi.org/10.1080/19942060.2022.2118171
  • Jiang, H., Ouyang, W., Sheng, C., Lan, J., & Bucknall, R. (2022). Numerical investigation on hydrodynamic performance of a novel shaftless rim-driven counter-rotating thruster considering gap fluid. Applied Ocean Research, 118, 102967. https://doi.org/10.1016/j.apor.2021.102967
  • Kort, L. (1940). Elektrisch angertriebene schiffsschraube. German Patent, 688(114), 13.
  • Lea, M., Thompson, D., Blarcom, B., Eaton, J., Friesch, J., & Richards, J. (2003). Scale model testing of a commercial rim-driven propulsor pod. Journal of Ship Production, 19(02), 121–130. https://doi.org/10.5957/jsp.2003.19.2.121
  • Lin, J., Guo, C., Zhao, D., Han, Y., & Su, Y. (2022a). Hydrodynamic simulation for evaluating Magnus anti-rolling devices with varying angles of attack. Ocean Engineering, 260, 111949. https://doi.org/10.1016/j.oceaneng.2022.111949
  • Lin, J., Han, Y., Guo, C., Su, Y., & Zhong, R. (2022b). Intelligent ship anti-rolling control system based on a deep deterministic policy gradient algorithm and the Magnus effect. Physics of Fluids, 34(5), 057102. https://doi.org/10.1063/5.0089697
  • Lin, J., Zhao, D., Guo, C., Zhang, Z., & Su, Y. (2020). Numerically modeling the effect of flexibility on flow around marine engineering structures: Using the shape of the Saguaro Cactus. Journal of Coastal Research, 36(3), 628–635. https://doi.org/10.2112/JCOASTRES-D-19-00115.1
  • Liu, B., & Vanierschot, M. (2021). Numerical study of the hydrodynamic characteristics comparison between a ducted propeller and a rim-driven thruster. Applied Sciences, 11(11), 4919. https://doi.org/10.3390/app11114919
  • Liu, B., Vanierschot, M., & Buysschaert, F. (2022a, August). Comparison study of the k − kL − ω and γ − Reθ transition models in the open water performance prediction of a rim-driven thruster. In Conference on Modelling Fluid Flow (CMFF'22), Budapest, Hungary, 70–77.
  • Liu, B., Vanierschot, M., & Buysschaert, F. (2022b). Effects of transition turbulence modeling on the hydrodynamic performance prediction of a rim-driven thruster under different duct designs. Ocean Engineering, 256, 111142. https://doi.org/10.1016/j.oceaneng.2022.111142
  • Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–632.
  • Ottersten, M., Yao, H., & Davidson, L. (2022a). Inlet gap effect on aerodynamics and tonal noise generation of a voluteless centrifugal fan. Journal of Sound and Vibration, 540(8), 117304. https://doi.org/10.1016/j.jsv.2022.117304
  • Ottersten, M., Yao, H., & Davidson, L. (2022b). Inlet gap influence on low-frequency flow unsteadiness in a centrifugal fan. Aerospace, 9(12), 846. https://doi.org/10.3390/aerospace9120846
  • Shao, X., Santasmasas, M. C., Xue, X., Niu, J., Davidson, L., Revell, A. J., & Yao, H. (2022). Near-wall modeling of forests for atmosphere boundary layers using lattice Boltzmann method on GPU. Engineering Applications of Computational Fluid Mechanics, 16(1), 2143–2156. https://doi.org/10.1080/19942060.2022.2132420
  • Song, B., Wang, Y., & Tian, W. (2015). Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method. Ocean Engineering, 103, 55–63. https://doi.org/10.1016/j.oceaneng.2015.04.074
  • Song, K., Guo, C., Sun, C., Wang, C., Gong, J., Li, P., & Wang, L. (2021). Simulation strategy of the full-scale ship resistance and propulsion performance. Engineering Applications of Computational Fluid Mechanics, 15(1), 1321–1342. https://doi.org/10.1080/19942060.2021.1974091
  • Song, X., Zhao, G., Yuan, L., Yang, B., Tian, G., & Ai, X. (2020). Numerical research of hydrodynamic performance impact factors of rim-driven thruster. Ship Engineering, 42(7), 67–71+163. https://doi.org/10.13788/j.cnki.cbgc.2020.07.13
  • Su, Y., Lin, J., Zhao, D., Guo, C., Wang, C., & Guo, H. (2020). Real-time prediction of large-scale ship model vertical acceleration based on recurrent neural network. Journal of Marine Science and Engineering, 8(10), 777. https://doi.org/10.3390/jmse8100777
  • Yakovlev, A. Y., Sokolov, M. A., & Marinich, N. V. (2011, June). Numerical design and experimental verification of a rim-driven thruster. In Proceedings of Second International Symposium on Marine Propulsors, Hamburg, Germany, 396–403.
  • Yan, X., Liang, X., Ouyang, W., Liu, Z., Liu, B., & Lan, J. (2017). A review of progress and applications of ship shaft-less rim-driven thrusters. Ocean Engineering, 144, 142–156. https://doi.org/10.1016/j.oceaneng.2017.08.045
  • Yao, H., & Davidson, L. (2019). Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body. The Journal of the Acoustical Society of America, 145(5), 3163–3176. https://doi.org/10.1121/1.5109548
  • Zhai, S., Jin, S. B., Chen, J. Q., Liu, Z. H., & Song, X. L. (2022). CFD-based multi-objective optimization of the duct for a rim-driven thruster. Ocean Engineering, 264, 112467. https://doi.org/10.1016/j.oceaneng.2022.112467
  • Zhu, Z. P., & Liu, H. L. (2022). The external characteristics and inner flow research of rim-driven thruster. Advances in Mechanical Engineering, 14(2), 168781322210816. https://doi.org/10.1177/16878132221081608