1,446
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shape optimization of closed-box girder considering dynamic and aerodynamic effects on flutter: a CFD-enabled and Kriging surrogate-based strategy

, , , &
Article: 2191693 | Received 15 Oct 2022, Accepted 13 Mar 2023, Published online: 30 Mar 2023

References

  • Abbas, T., & Morgenthal, G. (2016). Framework for sensitivity and uncertainty quantification in the flutter assessment of bridges. Probabilistic Engineering Mechanics, 43, 91–105. https://doi.org/10.1016/j.probengmech.2015.12.007
  • Bartoli, G., & Mannini, C. (2008). A simplified approach to bridge deck flutter. Journal of Wind Engineering and Industrial Aerodynamics, 96(2), 229–256. https://doi.org/10.1016/j.jweia.2007.06.001
  • Bernardini, E., Spence, S. M., Wei, D., & Kareem, A. (2015). Aerodynamic shape optimization of civil structures: A CFD-enabled kriging-based approach. Journal of Wind Engineering and Industrial Aerodynamics, 144, 154–164. https://doi.org/10.1016/j.jweia.2015.03.011
  • Chen, A., Zhou, Z., & Xiang, H. (2006). On the mechanism of vertical stabilizer plates for improving aerodynamic stability of bridges. Wind and Structures, 9(1), 59–74. https://doi.org/10.12989/was.2006.9.1.059
  • Chen, S. J., & Yang, KC,. (2002). Inelastic behavior of orthotropic steel deck stiffened by U-shaped stiffeners. Thin-walled Structures, 40(6), 537–553. https://doi.org/10.1016/S0263-8231(02)00005-8
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
  • Dai, H., & Wang, W. (2009). Application of low-discrepancy sampling method in structural reliability analysis. Structural Safety, 31(1), 55–64. https://doi.org/10.1016/j.strusafe.2008.03.001
  • Davenport, AG,. (1962). The response of slender, line-like structures to a gusty wind. Proceedings of the Institution of Civil Engineers, 23(3), 389–408. https://doi.org/10.1680/iicep.1962.10876
  • Fang, G., Pang, W., Zhao, L., Cui, W., Zhu, L., Cao, S., & Ge, Y. (2021a). Extreme typhoon wind speed mapping for coastal region of China: Geographically weighted regression–based circular subregion algorithm. Journal of Structural Engineering, 147(10), Article no. 04021146. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003122
  • Fang, G., Pang, W., Zhao, L., Rawal, P., Cao, S., & Ge, Y. (2021b). Toward a refined estimation of typhoon wind hazards: Parametric modeling and upstream terrain effects. Journal of Wind Engineering and Industrial Aerodynamics, 209, Article no. 104460. https://doi.org/10.1016/j.jweia.2020.104460
  • Fang, G., Pang, W., Zhao, L., Xu, K., Cao, S., & Ge, Y. (2022). Tropical-cyclone-wind-induced flutter failure analysis of long-span bridges. Engineering Failure Analysis, 132, Article no. 105933. https://doi.org/10.1016/j.engfailanal.2021.105933
  • Fang, K., Liu, M. Q., Qin, H., & Zhou, Y. D. (2018). Theory and application of uniform experimental designs (Vol. 221). Springer.
  • Giunta, A. A., Balabanov, V., Haim, D., Grossman, B., Mason, W. H., Watson, L. T., & Haftka, R. T. (1997). Multidisciplinary optimisation of a supersonic transport using design of experiments theory and response surface modelling. The Aeronautical Journal, 101(1008), 347–356. https://doi.org/10.1017/S0001924000066045
  • Han, Z., Zhang, K., Song, W., & Liu, J. (2013). Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils. In 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p. 1108).
  • Haque, M., Katsuchi, H., Yamada, H., & Nishio, M. (2016a). Investigation of edge fairing shaping effects on aerodynamic response of long-span bridge deck by unsteady RANS. Archives of Civil and Mechanical Engineering, 16(4), 888–900. https://doi.org/10.1016/j.acme.2016.06.007
  • Haque, M., Katsuchi, H., Yamada, H., & Nishio, M. (2016b). Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS. Engineering Applications of Computational Fluid Mechanics, 10(1), 1–16. https://doi.org/10.1080/19942060.2015.1099569
  • He, X., Li, H., Wang, H., Fang, D., & Liu, M. (2017). Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder. Journal of Wind Engineering and Industrial Aerodynamics, 170, 56–67. https://doi.org/10.1016/j.jweia.2017.08.009
  • Hu, X., Fang, G., Yang, J., Zhao, L., & Ge, Y. (2023). Simplified models for uncertainty quantification of extreme events using monte carlo technique. Reliability Engineering and System Safety, 230, Article no. 108935. https://doi.org/10.1016/j.ress.2022.108935
  • Jeong, S., Murayama, M., & Yamamoto, K. (2005). Efficient optimization design method using kriging model. Journal of Aircraft, 42(2), 413–420. https://doi.org/10.2514/1.6386
  • Kaya, H., Tiftikçi, H., Kutluay, Ü, & Sakarya, E. (2019). Generation of surrogate-based aerodynamic model of an UCAV configuration using an adaptive co-kriging method. Aerospace Science and Technology, 95, Article no. 105511. https://doi.org/10.1016/j.ast.2019.105511
  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119–139.
  • Kusano, I., Montoya, M. C., Baldomir, A., Nieto, F., Jurado, JÁ, & Hernández, S. (2020). Reliability based design optimization for bridge girder shape and plate thicknesses of long-span suspension bridges considering aeroelastic constraint. Journal of Wind Engineering and Industrial Aerodynamics, 202, Article no. 104176. https://doi.org/10.1016/j.jweia.2020.104176
  • Larsen, A., & Wall, A. (2012). Shaping of bridge box girders to avoid vortex shedding response. Journal of Wind Engineering and Industrial Aerodynamics, 104-106, 159–165. https://doi.org/10.1016/j.jweia.2012.04.018
  • Li, Y. L., Chen, X. Y., Yu, C. J., Togbenou, K., Wang, B., & Zhu, L. D. (2018). Effects of wind fairing angle on aerodynamic characteristics and dynamic responses of a streamlined trapezoidal box girder. Journal of Wind Engineering and Industrial Aerodynamics, 177, 69–78. https://doi.org/10.1016/j.jweia.2018.04.006
  • Lindman, H. R. (2012). Analysis of variance in experimental design. Springer Science & Business Media.
  • Liu, B., Liang, H., Han, Z. H., & Yang, G. (2022). Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide mach-number range. Aerospace Science and Technology, 124, Article no. 107557. https://doi.org/10.1016/j.ast.2022.107557
  • Locatelli, M. (1997). Bayesian algorithms for one-dimensional global optimization. Journal of Global Optimization, 10(1), 57–76. https://doi.org/10.1023/A:1008294716304
  • Lophaven, S. N., Nielsen, H. B., & Søndergaard, J. (2002). DACE: A matlab kriging toolbox. IMM, Informatics and Mathematical Modelling, The Technical University of Denmark.
  • Matsumoto, M., Kobayashi, Y., & Shirato, H. (1996). The influence of aerodynamic derivatives on flutter. Journal of Wind Engineering and Industrial Aerodynamics, 60, 227–239. https://doi.org/10.1016/0167-6105(96)00036-0
  • Montoya, M. C., Hernández, S., & Nieto, F. (2018a). Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints. Journal of Wind Engineering and Industrial Aerodynamics, 177, 429–455. https://doi.org/10.1016/j.jweia.2017.12.018
  • Montoya, M. C., Nieto, F., Hernández, S., Fontán, A., Jurado, JÁ, & Kareem, A. (2021). Aero-structural optimization of streamlined twin-Box deck bridges with short Gap considering flutter. Journal of Bridge Engineering, 26(6), Article no. 04021028. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001705
  • Montoya, M. C., Nieto, F., Hernández, S., Kusano, I., Álvarez, A. J., & Jurado, JÁ. (2018b). CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models. Journal of Wind Engineering and Industrial Aerodynamics, 177, 405–428. https://doi.org/10.1016/j.jweia.2018.01.014
  • Nieto, F., Hernández, S., Jurado, JÁ, & Mosquera, A. (2011). Analytical approach to sensitivity analysis of flutter speed in bridges considering variable deck mass. Advances in Engineering Software, 42(4), 117–129. https://doi.org/10.1016/j.advengsoft.2010.12.003
  • Nieto, F., Montoya, M. C., Hernández, S., Kusano, I., Casteleiro, A., Alvarez, A. J., … Fontán, A. (2020). Aerodynamic and aeroelastic responses of short gap twin-box decks: Box geometry and gap distance dependent surrogate based design. Journal of Wind Engineering and Industrial Aerodynamics, 201, Article no. 104147. https://doi.org/10.1016/j.jweia.2020.104147
  • Rahman, H. S., Alireza, K., & Reza, G. (2010). Application of artificial neural network, kriging, and inverse distance weighting models for estimation of scour depth around bridge pier with bed sill. Journal of Software Engineering and Applications, 03(10), 944–964. https://doi.org/10.4236/jsea.2010.310112
  • Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., & Duddeck, F. (2019). Kriging-assisted topology optimization of crash structures. Computer Methods in Applied Mechanics and Engineering, 348, 730–752. https://doi.org/10.1016/j.cma.2019.02.002
  • Ridha, H., Julien, W., François, G., & François, M. (2014). Application of the dual kriging method for the design of hot-air-based aircraft wing anti-icing system. Engineering Applications of Computational Fluid Mechanics, 8(4), 530–548. https://doi.org/10.1080/19942060.2014.11083305
  • Roy, R., Hinduja, S., & Teti, R. (2008). Recent advances in engineering design optimisation: Challenges and future trends. CIRP Annals, 57(2), 697–715. https://doi.org/10.1016/j.cirp.2008.09.007
  • Scanlan, R. H. (1988). On flutter and buffeting mechanisms in long-span bridges. Probabilistic Engineering Mechanics, 3(1), 22–27. https://doi.org/10.1016/0266-8920(88)90004-5
  • Siedziako, B., & Øiseth, O. (2017). On the importance of cross-sectional details in the wind tunnel testing of bridge deck section models. Procedia Engineering, 199, 3145–3151. https://doi.org/10.1016/j.proeng.2017.09.573
  • Sun, Q., Zhou, Z. Y., Hu, C. X., Qin, P., & Huang, D.. (2021). Numerical aerodynamic configuration optimization of streamlined box girder. Journal of Harbin Institute of Technology, 53(10), 93–100. https://doi.org/10.11918/201907178
  • Törn, A., & Žilinskas, A. (eds.). (1989). Global optimization. Springer Berlin Heidelberg.
  • Tubino, F. (2005). Relationships among aerodynamic admittance functions, flutter derivatives and static coefficients for long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 93(12), 929–950. https://doi.org/10.1016/j.jweia.2005.09.002
  • Vidanović, N., Rašuo, B., Kastratović, G., Maksimović, S., Ćurčić, D., & Samardžić, M. (2017). Aerodynamic–structural missile fin optimization. Aerospace Science and Technology, 65, 26–45. https://doi.org/10.1016/j.ast.2017.02.010
  • Villalpando, F., Reggio, M., & Ilinca, A. (2012). Numerical study of flow around iced wind turbine airfoil. Engineering Applications of Computational Fluid Mechanics, 6(1), 39–45. https://doi.org/10.1080/19942060.2012.11015401
  • Wang, H., Tao, T., Zhou, R., Hua, X., & Kareem, A. (2014). Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 128, 12–21. https://doi.org/10.1016/j.jweia.2014.03.004
  • Wang, Q., Liao, H. L., Li, M. S., & Xian, R. (2009, November 8–12). Wind tunnel study on aerodynamic optimization of suspension bridge deck based on flutter stability. The 7th Asia-pacific conference on wind engineering (APCWE-VII), Taipei, Taiwan.
  • Wang, Y., & Fang, K. T. (1981). A note on uniform distribution and experiment design. Chin. Sci. Bull, 26(6), 485–489. https://doi.org/10.1142/9789812701190_0035
  • Wu, J., Zhou, Y., & Chen, S. (2012). Wind-induced performance of long-span bridge with modified cross-section profiles by stochastic traffic. Engineering Structures, 41, 464–476. https://doi.org/10.1016/j.engstruct.2012.04.004
  • Xiao, W. J. (2011). Research on Local Structure of Separate Orthotropic Deck Flat Steel Box Girder[D]. Southwest Jiaotong University. (in Chinese).
  • Xu, G., Liang, X., Yao, S., Chen, D., & Li, Z. (2017). Multi-objective aerodynamic optimization of the streamlined shape of high-speed trains based on the kriging model. PloS one, 12(1), Article no. e0170803. https://doi.org/10.1371/journal.pone.0170803
  • Yang, C. (2010). Spatial Stress Analysis of Steel Box Girder for Long-span Cable-stayed Bridges[D]. Southwest Jiaotong University. (in Chinese).
  • Yang, Y., Zhou, R., Ge, Y., Du, Y., & Zhang, L. (2018). Sensitivity analysis of geometrical parameters on the aerodynamic performance of closed-box girder bridges. Sensors, 18(7), Article no. 2053. https://doi.org/10.3390/s18072053
  • Zhan, H., & Liao, H. L.. (2019). Numerical study on influence of steel Box girder height on bridge flutter stability..Journal of Wuhan University of Technology (Transportation Science & Engineering), 43(3), 457–461. https://doi.org/10.3963/j.issn.2095-3844.2019.03.016
  • Zhao, L., Li, K., Wang, C. J., Liu, G., Liu, T. C., Song, S. Y., & Ge, Y. J. (2019). Review on passive aerodynamic countermeasures on main girders aiming at wind-induced stabilities of long-span bridges. China Journal of Highway and Transport, 32(10), 34–48. https://doi.org/10.19721/j.cnki.1001-7372.2019.10.003. in Chinese.