1,265
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Photovoltaic-thermal system combined with wavy tubes, twisted tape inserts and a novel coolant fluid: energy and exergy analysis

, , , , ORCID Icon &
Article: 2208196 | Received 02 Dec 2022, Accepted 17 Apr 2023, Published online: 11 May 2023

References

  • Abdallah, S. R., Saidani-Scott, H., & Abdellatif, O. E. (2019). Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Solar Energy, 181, 108–115. https://doi.org/10.1016/j.solener.2019.01.088
  • Ahmadinejad, M., & Moosavi R. (2023). Energy and exergy evaluation of a baffled-nanofluid-based photovoltaic thermal system (PVT). International Journal of Heat and Mass Transfer, 203, 123775. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123775
  • Akbar, A., Najafi, G., Gorjian, S., Kasaeian, A., & Mazlan, M. (2021). Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: Indoor experimental tests and multi-objective optimization. Sustainable Energy Technologies and Assessments, 46, 101276. https://doi.org/10.1016/j.seta.2021.101276
  • Alktranee, M., Shehab, M. A., Németh, Z., Bencs, P., Hernadi, K., & Koós, T. (2022). Energy and exergy assessment of photovoltaic-thermal system using tungsten trioxide nanofluid: An experimental study. International Journal of Thermofluids, 16, 100228. https://doi.org/10.1016/j.ijft.2022.100228
  • Alquaity, A. B. S., Al-Dini, S. A., Wang, E. N., & Yilbas, B. S. (2012). Numerical investigation of liquid flow with phase change nanoparticles in microchannels. International Journal of Heat and Fluid Flow, 38, 159–167. https://doi.org/10.1016/j.ijheatfluidflow.2012.10.001
  • Arasteh, H., Rahbari, A., Mashayekhi, R., Keshmiri, A., Mahani, R. B., & Talebizadehsardari, P. (2021). Effect of pitch distance of rotational twisted tape on the heat transfer and fluid flow characteristics. International Journal of Thermal Sciences, 170, 106966. https://doi.org/10.1016/j.ijthermalsci.2021.106966
  • Aridi, R., Ali, S., Lemenand, T., Faraj, J., & Khaled, M. (2022). CFD analysis on the spatial effect of vortex generators in concentric tube heat exchangers – A comparative study. International Journal of Thermofluids, 16, 100247. https://doi.org/10.1016/j.ijft.2022.100247
  • Bhattarai, S., Oh, J.-H., Euh, S.-H., Kafle, G. K., & Kim, D. H. (2012). Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells, 103, 184–193. https://doi.org/10.1016/j.solmat.2012.04.017
  • Carpio, J., & Valencia, A. (2021). Heat transfer enhancement through longitudinal vortex generators in compact heat exchangers with flat tubes. International Communications in Heat and Mass Transfer, 120, 105035. https://doi.org/10.1016/j.icheatmasstransfer.2020.105035
  • Chen, B., Wang, X., Zeng, R., Zhang, Y., Wang, X., Niu, J., Li, Y., & Di, H. (2008). An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux. Experimental Thermal and Fluid Science, 32(8), 1638–1646. https://doi.org/10.1016/j.expthermflusci.2008.05.008
  • Collares-Pereira, M., & Rabl, A. (1979). The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22(2), 155–164. https://doi.org/10.1016/0038-092X(79)90100-2
  • Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333–346. https://doi.org/10.1016/0038-092X(69)90047-4
  • Darbari, B., Rashidi, S., & Keshmiri, A. (2020). Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators. Journal of Thermal Analysis and Calorimetry, 140(3), 1045–1055. https://doi.org/10.1007/s10973-019-08382-7
  • Demir, H., Dalkilic, A. S., Kürekci, N. A., Duangthongsuk, W., & Wongwises, S. (2011). Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. International Communications in Heat and Mass Transfer, 38(2), 218–228. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.009
  • Demirel, Y. (2013). Thermodynamic analysis. Arabian Journal for Science and Engineering, 38(2), 221–249. https://doi.org/10.1007/s13369-012-0450-8
  • Du, Y., Fell, C. J., Duck, B., Chen, D., Liffman, K., Zhang, Y., Gu, M., & Zhu, Y. (2016). Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Conversion and Management, 108, 60–67. https://doi.org/10.1016/j.enconman.2015.10.065
  • Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.
  • Eisapour, A. H., Eisapour, M., Hosseini, M. J., Shafaghat, A. H., Sardari, P. T., & Ranjbar, A. A. (2021). Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis. Renewable Energy, 169, 1351–1372. https://doi.org/10.1016/j.renene.2021.01.110
  • Eisapour, M., Eisapour, A. H., Hosseini, M. J., & Talebizadehsardari, P. (2020). Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid. Applied Energy, 266, 114849. https://doi.org/10.1016/j.apenergy.2020.114849
  • Ekramian, E., Etemad, S. G., & Haghshenasfard, M. (2014). Numerical analysis of heat transfer performance of flat plate solar collectors. Journal of Fluid Flow, Heat and Mass Transfer (JFFHMT), 1, 38–42. https://doi.org/10.11159/jffhmt.2014.006
  • Essam, Y., Ali Najah, A., Ramli, R., Chau, K.-W., Idris Ibrahim, M. S., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2022). Investigating photovoltaic solar power output forecasting using machine learning algorithms. Engineering Applications of Computational Fluid Mechanics, 16(1), 2002–2034. https://doi.org/10.1080/19942060.2022.2126528
  • Fontenault, B. J., & Gutierrez-Miravete, E. (2012). Modeling a combined photovoltaic-thermal solar panel. Proceedings 2012 COMSOL Conference, Boston.
  • Fu, Z., Yongwei, L., Liang, X., Lou, S., Qiu, Z., Cheng, Z., & Zhu, Q. (2021). Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs. Energy, 228, 120509. https://doi.org/10.1016/j.energy.2021.120509
  • Ghalambaz, M., Doostani, A., Izadpanahi, E., & Chamkha, A. J. (2020a). Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. Journal of Thermal Analysis and Calorimetry, 139(3), 2321–2336. https://doi.org/10.1007/s10973-019-08617-7
  • Ghalambaz, M., Groşan, T., & Pop, I. (2019). Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. Journal of Molecular Liquids, 293, 111432. https://doi.org/10.1016/j.molliq.2019.111432
  • Ghalambaz, M., Mashayekhi, R., Arasteh, H., Ali, H. M., Talebizadehsardari, P., & Yaïci, W. (2020b). Thermo-hydraulic performance analysis on the effects of truncated twisted tape inserts in a tube heat exchanger. Symmetry, 12(10), 1652. https://doi.org/10.3390/sym12101652
  • Hasan, M. I. (2011). Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension. Applied Thermal Engineering, 31(6–7), 1068–1075. https://doi.org/10.1016/j.applthermaleng.2010.11.032
  • Ho, C. J., Liu, Y.-C., Ghalambaz, M., & Yan, W.-M. (2020). Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heatsink. International Journal of Heat and Mass Transfer, 155, 119858. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119858
  • Hossain, M. S., Pandey, A. K., Selvaraj, J., Rahim, N. A., Rivai, A., & Tyagi, V. V. (2019). Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia. Applied Thermal Engineering, 153, 861–871. https://doi.org/10.1016/j.applthermaleng.2019.01.007
  • Huang, G., Riera Curt, S., Wang, K., & Markides, C. N. (2020). Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: A review. Nano Materials Science, 2(3), 183–203. https://doi.org/10.1016/j.nanoms.2020.03.008
  • Ji, J., Lu, J.-P., Chow, T.-T., He, W., & Pei, G. (2007). A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy, 84(2), 222–237. https://doi.org/10.1016/j.apenergy.2006.04.009
  • Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13-14), 3187–3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
  • Keshmiri, A., Cotton, M. A. M. A., Addad, Y., Rolfo, S., & Billard, F. (2008). RANS and LES investigations of vertical flows in the fuel passages of gas-cooled nuclear reactors. Proceedings 16th ASME International Conference on Nuclear Engineering ‘ICONE16’, Pap ICONE16-48372, pp. 297–306.
  • Keshmiri, A., Revell, A., & Darabkhani, H. G. (2016). Assessment of a common nonlinear eddy-viscosity turbulence model in capturing laminarization in mixed convection flows. Numerical Heat Transfer, Part A: Applications, 69(2), 146–165. https://doi.org/10.1080/10407782.2015.1069672
  • Keshmiri, A., Uribe, J., & Shokri, N. (2015). Benchmarking of three different CFD codes in simulating natural, forced and mixed convection flows. Numerical Heat Transfer, Part A: Applications, 67(12). https://doi.org/10.1080/10407782.2014.965115
  • Khanjari, Y., Pourfayaz, F., & Kasaeian, A. B. (2016). Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 122, 263–278. https://doi.org/10.1016/j.enconman.2016.05.083
  • Kim, W. H., & Tae, S. P. (2022). Effect of multihole baffle-induced lobe flow structures on a high efficiency micro-thermophotovoltaic system. Engineering Applications of Computational Fluid Mechanics, 16(1), 2074–2099. https://doi.org/10.1080/19942060.2022.2130990
  • Kumar, S., & Mullick, S. C. (2010). Wind heat transfer coefficient in solar collectors in outdoor conditions. Solar Energy, 84(6), 956–963. https://doi.org/10.1016/j.solener.2010.03.003
  • Li, J., Zhang, W., Lingzhi, X., Zihao, L., Xin, W., Oufan, Z., Jianmei, Z., & Xiding, Z. (2022). A hybrid photovoltaic and water/air based thermal (PVT) solar energy collector with integrated PCM for building application. Renewable Energy, 199, 662–671. https://doi.org/10.1016/j.renene.2022.09.015
  • Liaw, K. L., Kurnia, J. C., & Sasmito, A. P. (2021). Turbulent convective heat transfer in helical tube with twisted tape insert. International Journal of Heat and Mass Transfer, 169, 120918. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120918
  • Liu, B. Y. H., & Jordan, R. C. (1963). The long-term average performance of flat-plate solar-energy collectors: With design data for the US, its outlying possessions and Canada. Solar Energy, 7(2), 53–74. https://doi.org/10.1016/0038-092X(63)90006-9
  • Mashayekhi, R., Arasteh, H., Talebizadehsardari, P., Kumar, A., Hangi, M., & Rahbari, A. (2021). Heat transfer enhancement of nanofluid flow in a tube equipped with rotating twisted tape inserts: A two-phase approach. Heat Transfer Engineering, 1–18. https://doi.org/10.1080/01457632.2021.1896835
  • Mashayekhi, R., Arasteh, H., Toghraie, D., Motaharpour, S. H., Keshmiri, A., & Afrand, M. (2020). Heat transfer enhancement of Water-Al2O3 nanofluid in an oval channel equipped with two rows of twisted conical strip inserts in various directions: A two-phase approach. Computers & Mathematics with Applications, 79(8), 2203–2215. https://doi.org/10.1016/j.camwa.2019.10.024
  • Mashayekhi, R., Eisapour, A. H., Eisapour, M., Talebizadehsardari, P., & Rahbari, A. (2022). Hydrothermal performance of twisted elliptical tube equipped with twisted tape insert. International Journal of Thermal Sciences, 172, 107233. https://doi.org/10.1016/j.ijthermalsci.2021.107233
  • Mehryan, S. A. M., Ghalambaz, M., Chamkha, A. J., & Izadi, M. (2020). Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model. Powder Technology, 367, 443–455. https://doi.org/10.1016/j.powtec.2020.04.005
  • Menon, G. S., Murali, S., Elias, J., Aniesrani Delfiya, D. S., Alfiya, P. V., & Samuel, M. P. (2022). Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy, 188, 986–996. https://doi.org/10.1016/j.renene.2022.02.080
  • Mishra, P. C., Mukherjee, S., Nayak, S. K., & Panda, A. (2014). A brief review on viscosity of nanofluids. International Nano Letters, 4(4), 109–120. https://doi.org/10.1007/s40089-014-0126-3
  • Moore, K., & Wei, W. (2021). Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Materials Science, 3(3), 276–290. https://doi.org/10.1016/j.nanoms.2021.03.005
  • Öğüt, E. B. (2009). Natural convection of water-based nanofluids in an inclined enclosure with a heat source. International Journal of Thermal Sciences, 48(11), 2063–2073. https://doi.org/10.1016/j.ijthermalsci.2009.03.014
  • Özakin, A. N., & Kaya, F. (2019). Effect on the exergy of the PVT system of fins added to an air-cooled channel: A study on temperature and air velocity with ANSYS Fluent. Solar Energy, 184, 561–569. https://doi.org/10.1016/j.solener.2019.03.100
  • Saleem, A., Akhtar, S., Nadeem, S., Alharbi, F. M., Ghalambaz, M., & Issakhov, A. (2020). Mathematical computations for peristaltic flow of heated non-Newtonian fluid inside a sinusoidal elliptic duct. Physica Scripta, 95(10), 105009. https://doi.org/10.1088/1402-4896/abbaa3
  • Saleem, S., Akhtar, S., Nadeem, S., Saleem, A., Ghalambaz, M., & Issakhov, A. (2021). Mathematical study of electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chinese Journal of Physics, 71, 300–311. https://doi.org/10.1016/j.cjph.2021.02.015
  • Santos, J. M., Pinazo, J. M., & Cañada, J. (2003). Methodology for generating daily clearness index index values Kt starting from the monthly average daily value K¯t. Determining the daily sequence using stochastic models. Renewable Energy, 28(10), 1523–1544. https://doi.org/10.1016/S0960-1481(02)00217-3
  • Shahsavar, A., Eisapour, M., & Talebizadehsardari, P. (2020). Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular. Energy, 208, 118409. https://doi.org/10.1016/j.energy.2020.118409
  • Tian, M.-W., Khorasani, S., Moria, H., Pourhedayat, S., & Dizaji, H. S. (2020). Profit and efficiency boost of triangular vortex-generators by novel techniques. International Journal of Heat and Mass Transfer, 156, 119842. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119842
  • Tomar, V., Norton, B., & Tiwari, G. N. (2019). A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study. Renewable Energy, 137, 93–108. https://doi.org/10.1016/j.renene.2017.11.020
  • Vand, V. (1945). Theory of viscosity of concentrated suspensions. Nature, 155(3934), 364–365. https://doi.org/10.1038/155364b0
  • Wu, S.-Y., Guo, F.-H., & Xiao, L. (2015). A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system. International Journal of Green Energy, 12(4), 379–397. https://doi.org/10.1080/15435075.2013.840833
  • Xuan, Y., Li, Q., & Hu, W. (2003). Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, 49(4), 1038–1043. https://doi.org/10.1002/aic.690490420
  • Yaghoubi, M. A., & Sabzevari, A. (1996). Further data on solar radiation in Shiraz, Iran. Renewable Energy, 7(4), 393–399. https://doi.org/10.1016/0960-1481(96)00010-9
  • Yu, Q., Romagnoli, A., Yang, R., Xie, D., Liu, C., Ding, Y., & Li, Y. (2019). Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module. Energy Conversion and Management, 183, 708–720. https://doi.org/10.1016/j.enconman.2019.01.029