1,161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of curvature radius and angle on aerodynamic characteristics of a sphere travelling in a branched tube system

, , , , , & show all
Article: 2208633 | Received 27 Jan 2023, Accepted 25 Apr 2023, Published online: 08 May 2023

References

  • Abou-Haidar, N., & Dixon, S. (1992). Pressure losses in combining subsonic flows through branched ducts. Journal of Turbomachinery, 114(1), 264–270. https://doi.org/10.1115/1.2927994
  • Ahmed, H., Sharif, A., & Ghadiri, M. (2002). The drag on a sphere in a tapered tube. WIT Transactions on Engineering Sciences, 36, 10. https://doi.org/10.2495/AFM020441
  • Bao, S., Hu, X., Wang, J., Ma, T., Rao, Y., & Deng, Z. (2020). Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system. Advances in Aerodynamics, 2(1), 1–18. https://doi.org/10.1186/s42774-019-0024-5
  • Bi, H., Wang, Z., Wang, H., & Zhou, Y. (2022). Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube. Physics of Fluids, 34(9), 096111. https://doi.org/10.1063/5.0104819
  • Biamino, L., Jourdan, G., Igra, O., Mariani, C., Tosello, R., Leriche, D., & Houas, L. (2014). Experimental investigation of shock wave propagation in a 90° branched duct. Shock Waves, 24(3), 307–315. https://doi.org/10.1007/s00193-013-0481-4
  • Bizzozero, M., Sato, Y., & Sayed, M. A. (2021). Aerodynamic study of a Hyperloop pod equipped with compressor to overcome the Kantrowitz limit. Journal of Wind Engineering and Industrial Aerodynamics, 218, 104784. https://doi.org/10.1016/j.jweia.2021.104784
  • Charters, A. C., & Thomas, R. N. (1945). The aerodynamic performance of small spheres from subsonic to high supersonic velocities. Journal of the Aeronautical Sciences, 12(4), 468–476. https://doi.org/10.2514/8.11287
  • Han, S., Zhang, J., Xiong, X., Ji, P., Zhang, L., Sheridan, J., & Gao, G. (2022). Influence of high-speed maglev train speed on tunnel aerodynamic effects. Building and Environment, 223, 109460. https://doi.org/10.1016/j.buildenv.2022.109460
  • Hruschka, R., & Klatt, D. (2019). In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic mach numbers. Shock Waves, 29(2), 297–306. https://doi.org/10.1007/s00193-018-0816-2
  • Hu, X., Deng, Z., Zhang, J., & Zhang, W. (2021). Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation. Journal of Fluids and Structures, 107, 103413. https://doi.org/10.1016/j.jfluidstructs.2021.103413
  • Igra, D., & Igra, O. (2014). Simulation of shock wave propagation in a duct with a side branch. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(12), 2226–2236. https://doi.org/10.1177/0954410013515455
  • Igra, O., Wang, L., Falcovitz, J., & Heilig, W. (1998). Shock wave propagation in a branched duct. Shock Waves, 8(6), 375–381. https://doi.org/10.1007/s001930050130
  • Igra, O., Wu, X., Falcovitz, J., Meguro, T., Takayama, K., & Heilig, W. (2001). Experimental and theoretical study of shock wave propagation through double-bend ducts. Journal of Fluid Mechanics, 437, 255–282. https://doi.org/10.1017/S0022112001004098
  • Jang, K. S., Le, T. T. G., Kim, J., Lee, K.-S., & Ryu, J. (2021). Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system. Aerospace Science and Technology, 117, 106970. https://doi.org/10.1016/j.ast.2021.106970
  • Jiqiang, N., Yang, S., Qiujun, Y., Xiaoling, C., Yanping, Y., & Xiaofeng, Y. (2020). Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube. Aerospace Science and Technology, 105, 105977. https://doi.org/10.1016/j.ast.2020.105977
  • Kang, H., Jin, Y., Kwon, H., & Kim, K. (2017). A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics. International Journal of Aeronautical and Space Sciences, 18(4), 614–622. https://doi.org/10.5139/IJASS.2017.18.4.614
  • Kim, J., Jang, K. S., Le, T. T. G., Lee, K.-S., & Ryu, J. (2022). Theoretical and numerical analysis of pressure waves and aerodynamic characteristics in Hyperloop system under cracked-tube conditions. Aerospace Science and Technology, 123, 107458. https://doi.org/10.1016/j.ast.2022.107458
  • Kim, J., Le, T. T. G., Cho, M., & Ryu, J. (2022). Theoretical and numerical analysis of effects of sudden expansion and contraction on compressible flow phenomena in Hyperloop system. Aerospace Science and Technology, 126, 107587. https://doi.org/10.1016/j.ast.2022.107587
  • Kim, T.-K., Kim, K.-H., & Kwon, H.-B. (2011). Aerodynamic characteristics of a tube train. Journal of Wind Engineering and Industrial Aerodynamics, 99(12), 1187–1196. https://doi.org/10.1016/j.jweia.2011.09.001
  • Krishnan, S., & Kaman, A. (2010). Effect of blockage ratio on drag and heat transfer from a centrally located sphere in pipe flow. Engineering Applications of Computational Fluid Mechanics, 4(3), 396–414. https://doi.org/10.1080/19942060.2010.11015327
  • Le, T. T. G., Jang, K. S., Lee, K.-S., & Ryu, J. (2020). Numerical investigation of aerodynamic drag and pressure waves in hyperloop systems. Mathematics, 8(11), 1973. https://doi.org/10.3390/math8111973
  • Le, T. T. G., Kim, J., Cho, M., & Jaiyoung, R. (2022). Effects of tail shapes/lengths of Hyperloop pod on aerodynamic characteristics and wave phenomenon. Aerospace Science and Technology, 131, 107962. https://doi.org/10.1016/j.ast.2022.107962
  • Le, T. T. G., Kim, J., Jang, K. S., Lee, K.-S., & Ryu, J. (2022a). Numerical study of unsteady compressible flow induced by multiple pods operating in the Hyperloop system. Journal of Wind Engineering and Industrial Aerodynamics, 226, 105024. https://doi.org/10.1016/j.jweia.2022.105024
  • Le, T. T. G., Kim, J., Jang, K. S., Lee, K.-S., & Ryu, J. (2022b). Numerical study on the influence of the nose and tail shape on the aerodynamic characteristics of a Hyperloop pod. Aerospace Science and Technology, 121, 107362. https://doi.org/10.1016/j.ast.2022.107362
  • Liu, F., Han, Z.-H., Zhang, Y., Song, K., Song, W.-P., Gui, F., & Tang, J.-B. (2019). Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance. Aerospace Science and Technology, 93, 105345. https://doi.org/10.1016/j.ast.2019.105345
  • Lluesma-Rodríguez, F., González, T., & Hoyas, S. (2021a). CFD simulation of a hyperloop capsule inside a closed environment. Results in Engineering, 9, 100196. https://doi.org/10.1016/j.rineng.2020.100196
  • Lluesma-Rodríguez, F., González, T., & Hoyas, S. (2021b). CFD simulation of a Hyperloop capsule inside a Low-pressure environment using an Aerodynamic Compressor as Propulsion and Drag Reduction Method. Applied Sciences, 11(9), 3934. https://doi.org/10.3390/app11093934
  • Ma, J., Zhou, D., Zhao, L., Zhang, Y., & Zhao, Y. (2013). The approach to calculate the aerodynamic drag of maglev train in the evacuated tube. Journal of Modern Transportation, 21(3), 200–208. https://doi.org/10.1007/s40534-013-0019-6
  • Mao, C., Jin, T., Luo, K., & Fan, J. (2019). Investigation of supersonic turbulent flows over a sphere by fully resolved direct numerical simulation. Physics of Fluids, 31(5), 056102. https://doi.org/10.1063/1.5092152
  • Mortazawy, S. M., Kontis, K., & Ekaterinaris, J. (2020). Normal shock wave attenuation during propagation in ducts with grooves. Shock Waves, 30(1), 91–113. https://doi.org/10.1007/s00193-019-00916-0
  • Nick, N., & Sato, Y. (2020). Computational fluid dynamics simulation of Hyperloop pod predicting laminar–turbulent transition. Railway Engineering Science, 28(1), 97–111. https://doi.org/10.1007/s40534-020-00204-z
  • Niu, J., Sui, Y., Yu, Q., Cao, X., Yuan, Y., & Yang, X. (2022). Comparative numerical study of aerodynamic heating and performance of transonic hyperloop pods with different noses. Case Studies in Thermal Engineering, 29, 101701. https://doi.org/10.1016/j.csite.2021.101701
  • Niu, J., Wang, Y., Wu, D., & Liu, F. (2020). Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train. Engineering Applications of Computational Fluid Mechanics, 14(1), 655–668. https://doi.org/10.1080/19942060.2020.1756414
  • Oh, J.-S., Kang, T., Ham, S., Lee, K.-S., Jang, Y.-J., Ryou, H.-S., & Ryu, J. (2019). Numerical analysis of aerodynamic characteristics of Hyperloop system. Energies, 12(3), 518. https://doi.org/10.3390/en12030518
  • Sui, Y., Niu, J., Ricco, P., Yuan, Y., Yu, Q., Cao, X., & Yang, X. (2021). Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube. International Journal of Heat and Fluid Flow, 88, 108752. https://doi.org/10.1016/j.ijheatfluidflow.2020.108752
  • Sui, Y., Niu, J., Yu, Q., Yuan, Y., Cao, X., & Yang, X. (2021). Numerical analysis of the aerothermodynamic behavior of a Hyperloop in choked flow. Energy, 237, 121427. https://doi.org/10.1016/j.energy.2021.121427
  • Sui, Y., Niu, J., Yuan, Y., Yu, Q., Cao, X., Wu, D., & Yang, X. (2020). An aerothermal study of influence of blockage ratio on a supersonic tube train system. Journal of Thermal Science, 31(2), 529–540. https://doi.org/10.1007/s11630-020-1281-7
  • William-Louis, M., Ould-El-Hadrami, A., & Tournier, C. (1998). On the calculation of the unsteady compressible flow through an N-branch junction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(1), 49–56. https://doi.org/10.1243/0954406981521033
  • Xia, Y., Liu, T., Gu, H., Guo, Z., Chen, Z., Li, W., & Li, L. (2020). Aerodynamic effects of the gap spacing between adjacent vehicles on wind tunnel train models. Engineering Applications of Computational Fluid Mechanics, 14(1), 835–852. https://doi.org/10.1080/19942060.2020.1773319
  • Yang, W., Deng, E., He, X., Luo, L., Zhu, Z., Wang, Y., & Li, Z. (2021). Influence of wind barrier on the transient aerodynamic performance of high-speed trains under crosswinds at tunnel–bridge sections. Engineering Applications of Computational Fluid Mechanics, 15(1), 727–746. https://doi.org/10.1080/19942060.2021.1918257
  • Yin, G., & Ong, M. C. (2020). On the wake flow behind a sphere in a pipe flow at low Reynolds numbers. Physics of Fluids, 32(10), 103605. https://doi.org/10.1063/5.0017349
  • Yu, Q., Yang, X., Niu, J., Sui, Y., Du, Y., & Yuan, Y. (2021). Aerodynamic thermal environment around transonic tube train in choked/unchoked flow. International Journal of Heat and Fluid Flow, 92, 108890. https://doi.org/10.1016/j.ijheatfluidflow.2021.108890
  • Yu, Q., Yang, X., Niu, J., Sui, Y., Du, Y., & Yuan, Y. (2022). Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system. Aerospace Science and Technology, 121, 107367. https://doi.org/10.1016/j.ast.2022.107367
  • Zhou, K., Ding, G., Wang, Y., & Niu, J. (2021). Aeroheating and aerodynamic performance of a transonic hyperloop pod with radial gap and axial channel: A contrastive study. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104591. https://doi.org/10.1016/j.jweia.2021.104591
  • Zhou, P., Qin, D., Zhang, J., & Li, T. (2021). Aerodynamic characteristics of the evacuated tube maglev train considering the suspension gap. International Journal of Rail Transportation, 10(2), 195–215. https://doi.org/10.1080/23248378.2021.1885514
  • Zhou, P., & Zhang, J. (2020). Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train. Vacuum, 173, 109142. https://doi.org/10.1016/j.vacuum.2019.109142
  • Zhou, P., Zhang, J., & Li, T. (2020). Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train. International Journal of Rail Transportation, 8(1), 27–44. https://doi.org/10.1080/23248378.2019.1675191
  • Zhu, L., Chen, X., Tian, X., Song, J., Li, H., & Sun, S. (2020). Assessment on jet direction effect on drag and heat reduction efficiency for hypersonic vehicles. Aerospace Science and Technology, 106, 105932. https://doi.org/10.1016/j.ast.2020.105932