1,092
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical modelling and theoretical analysis of the acoustic attenuation in bubbly liquids

, , , , , & show all
Article: 2210193 | Received 01 Mar 2023, Accepted 28 Apr 2023, Published online: 12 May 2023

References

  • Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., & Mofrad, M. R. K. (2021). Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields. Engineering Applications of Computational Fluid Mechanics, 15(1), 1703–1725. https://doi.org/10.1080/19942060.2021.1989042
  • Allen, J. S., May, D. J., & Ferrara, K. W. (2002). Dynamics of therapeutic ultrasound contrast agents. Ultrasound in Medicine & Biology, 28(6), 805–816. https://doi.org/10.1016/S0301-5629(02)00522-7
  • Brenner, M. P., Hilgenfeldt, S., & Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74(2), 425–484. https://doi.org/10.1103/RevModPhys.74.425
  • Chen, Y.-h., Zhan, J.-m., & Li, Y.-t. (2021). Numerical simulation of cavitation-bubble expansion and collapse inside a bottle subjected to impact on its topside. Engineering Applications of Computational Fluid Mechanics, 15(1), 1440–1451. https://doi.org/10.1080/19942060.2021.1976279
  • Clark, A., Bonilla, S., Suo, D., Shapira, Y., & Averkiou, M. (2021). Microbubble-Enhanced heating: Exploring the effect of microbubble concentration and pressure amplitude on high-intensity focused ultrasound treatments. Ultrasound in Medicine & Biology, 47(8), 2296–2309. https://doi.org/10.1016/j.ultrasmedbio.2021.03.035
  • Commander, K. W., & Prosperetti, A. (1989). Linear pressure waves in bubbly liquids: Comparison between theory and experiments. The Journal of the Acoustical Society of America, 85(2), 732–746. https://doi.org/10.1121/1.397599
  • Cowley, J., & McGinty, S. (2019). A mathematical model of sonoporation using a liquid-crystalline shelled microbubble. Ultrasonics, 96, 214–219. https://doi.org/10.1016/j.ultras.2019.01.004
  • de Jong, N., Cornet, R., & Lancée, C. T. (1994). Higher harmonics of vibrating gas-filled microspheres. Part one: Simulations. Ultrasonics, 32(6), 447–453. https://doi.org/10.1016/0041-624X(94)90064-7
  • Frinking, P., Segers, T., Luan, Y., & Tranquart, F. (2020). Three decades of ultrasound contrast agents: A review of the past, present and future improvements. Ultrasound in Medicine & Biology, 46(4), 892–908. https://doi.org/10.1016/j.ultrasmedbio.2019.12.008
  • Fuster, D. (2019). A review of models for bubble clusters in cavitating flows. Flow, Turbulence and Combustion, 102(3), 497–536. https://doi.org/10.1007/s10494-018-9993-4
  • Gorce, J. M., Arditi, M., & Schneider, M. (2000). Influence of bubble size distribution on the echogenicity of ultrasound contrast agents. Investigative Radiology, 35(11), 661–671. https://doi.org/10.1097/00004424-200011000-00003
  • Gümmer, J., Schenke, S., & Denner, F. (2021). Modelling lipid-coated microbubbles in focused ultrasound applications at subresonance frequencies. Ultrasound in Medicine & Biology, 47(10), 2958–2979. https://doi.org/10.1016/j.ultrasmedbio.2021.06.012
  • Helfield, B. (2019). A review of phospholipid encapsulated ultrasound contrast agent microbubble physics. Ultrasound in Medicine & Biology, 45(2), 282–300. https://doi.org/10.1016/j.ultrasmedbio.2018.09.020
  • Helfield, B., Zou, Y., & Matsuura, N. (2021). Acoustically-stimulated nanobubbles: Opportunities in medical ultrasound imaging and therapy. Frontiers in Physics, 9, 654374. https://doi.org/10.3389/fphy.2021.654374
  • Helfield, B. L., & Goertz, D. E. (2013). Nonlinear resonance behavior and linear shell estimates for Definity™ and MicroMarker™ assessed with acoustic microbubble spectroscopy. The Journal of the Acoustical Society of America, 133(2), 1158–1168. https://doi.org/10.1121/1.4774379
  • Ida, M., Naoe, T., & Futakawa, M. (2007). Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction. Physical Review E, 76(4), 046309. https://doi.org/10.1103/PhysRevE.76.046309
  • Jamshidi, R., & Brenner, G. (2013). Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number. Ultrasonics, 53(4), 842–848. https://doi.org/10.1016/j.ultras.2012.12.004
  • Keller, J. B., & Miksis, M. (1980). Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America, 68(2), 628–633. https://doi.org/10.1121/1.384720
  • Lauer, E., Hu, X. Y., Hickel, S., & Adams, N. A. (2012). Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Computers & Fluids, 69(11), 1–19. https://doi.org/10.1016/j.compfluid.2012.07.020
  • Lee, J. W., Heo, H., Sohn, D. K., & Ko, H. S. (2021). Development of a numerical method for multiphase flows using an electrostatic model in a wire-mesh sensor. Engineering Applications of Computational Fluid Mechanics, 15(1), 344–362. https://doi.org/10.1080/19942060.2021.1876775
  • Leighton, T. G. (1994). The acoustic bubble. Academic Press.
  • Leroy, V., Strybulevych, A., Scanlon, M. G., & Page, J. H. (2009). Transmission of ultrasound through a single layer of bubbles. The European Physical Journal E, 29(1), 123–130. https://doi.org/10.1140/epje/i2009-10457-y
  • Li, H., Yang, Y., Zhang, M., Yin, L., Tu, J., Guo, X., & Zhang, D. (2018). Acoustic characterization and enhanced ultrasound imaging of long-circulating lipid-coated microbubbles. Journal of Ultrasound in Medicine, 37(5), 1243–1256. https://doi.org/10.1002/jum.14470
  • Li, Q., Ming, D. Z., Lei, M., Guo, X., Liu, J. L., Zhu, H. W., Fang, L., & Wang, Z. B. (2022). Numerical investigation on the coupled mechanisms of bubble breakup in a venturi-type bubble generator. Engineering Applications of Computational Fluid Mechanics, 16(1), 229–247. https://doi.org/10.1080/19942060.2021.2008501
  • Marmottant, P., Sander, V. D. M., Emmer, M., Versluis, M., De Jong, N., Hilgenfeldt, S., & Lohse, D. (2005). A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. The Journal of the Acoustical Society of America, 118(6), 3499–3505. https://doi.org/10.1121/1.2109427
  • Modarreszadeh, A., Timofeev, E., Merlen, A., & Pernod, P. (2021). Numerical simulation of the interaction of wave phase conjugation with bubble clouds. International Journal of Multiphase Flow, 141, 103638. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103638
  • Nederhoed, J. H., Tjaberinga, M., Otten, R. H. J., Evers, J. M., Musters, R. J. P., Wisselink, W., & Yeung, K. K. (2021). Therapeutic use of microbubbles and ultrasound in acute peripheral arterial thrombosis: A systematic review. Ultrasound in Medicine & Biology, 47(10), 2821–2838. https://doi.org/10.1016/j.ultrasmedbio.2021.06.001
  • Omoteso, K. A., Roy-Layinde, T. O., Laoye, J. A., Vincent, U. E., & McClintock, P. V. E. (2021). Acoustic vibrational resonance in a Rayleigh-Plesset bubble oscillator. Ultrasonics Sonochemistry, 70, 105346. https://doi.org/10.1016/j.ultsonch.2020.105346
  • Paul, S., Katiyar, A., Sarkar, K., Chatterjee, D., Shi, W. T., & Forsberg, F. (2010). Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model. The Journal of the Acoustical Society of America, 127(6), 3846–3857. https://doi.org/10.1121/1.3418685
  • Plesset, M. S., & Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9(1), 145–185. https://doi.org/10.1146/annurev.fl.09.010177.001045
  • Prosperetti, A., Crum, L. A., & Commander, K. W. (1988). Nonlinear bubble dynamics. The Journal of the Acoustical Society of America, 83(2), 502–514. https://doi.org/10.1121/1.396145
  • Segers, T., de Jong, N., & Versluis, M. (2016). Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments. The Journal of the Acoustical Society of America, 140(4), 2506–2517. https://doi.org/10.1121/1.4964270
  • Segers, T., Gaud, E., Versluis, M., & Frinking, P. (2018). High-precision acoustic measurements of the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles. Soft Matter, 14(47), 9550–9561. https://doi.org/10.1039/C8SM00918J
  • Si, Q., Ali, A., Liao, M., Yuan, J., Gu, Y., Yuan, S., & Bois, G. (2023). Assessment of cavitation noise in a centrifugal pump using acoustic finite element method and spherical cavity radiation theory. Engineering Applications of Computational Fluid Mechanics, 17(1), 2173302. https://doi.org/10.1080/19942060.2023.2173302
  • Silberman, E. (1957). Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. The Journal of the Acoustical Society of America, 29(8), 925–933. https://doi.org/10.1121/1.1909101
  • Stride, E., Segers, T., Lajoinie, G., Cherkaoui, S., Bettinger, T., Versluis, M., & Borden, M. (2020). Microbubble agents: New directions. Ultrasound in Medicine & Biology, 46(6), 1326–1343. https://doi.org/10.1016/j.ultrasmedbio.2020.01.027
  • Subroto, T., Lebon, G. S. B., Eskin, D. G., Skalicky, I., Roberts, D., Tzanakis, I., & Pericleous, K. (2021). Numerical modelling and experimental validation of the effect of ultrasonic melt treatment in a direct-chill cast AA6008 alloy billet. Journal of Materials Research and Technology, 12, 1582–1596. https://doi.org/10.1016/j.jmrt.2021.03.061
  • Suo, X. Y., Jiang, Y., & Wang, W. J. (2021). Hydraulic axial plunger pump: Gaseous and vaporous cavitation characteristics and optimization method. Engineering Applications of Computational Fluid Mechanics, 15(1), 712–726. https://doi.org/10.1080/19942060.2021.1913232
  • Trujillo, F. J. (2018). A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part I: Theory and validation at low acoustic pressure amplitudes. Ultrasonics Sonochemistry, 47, 75–98. https://doi.org/10.1016/j.ultsonch.2018.04.014
  • Tu, J., Guan, J., Qiu, Y., & Matula, T. J. (2009). Estimating the shell parameters of SonoVue microbubbles using light scattering. The Journal of the Acoustical Society of America, 126(6), 2954–2962. https://doi.org/10.1121/1.3242346
  • Tu, J., Swalwell, J. E., Giraud, D., Cui, W., Chen, W., & Matula, T. J. (2011). Microbubble sizing and shell characterization using flow cytometry. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(5), 955–963. https://doi.org/10.1109/TUFFC.2011.1896
  • Versluis, M., Stride, E., Lajoinie, G., Dollet, B., & Segers, T. (2020). Ultrasound contrast agent modeling: A review. Ultrasound in Medicine & Biology, 46(9), 2117–2144. https://doi.org/10.1016/j.ultrasmedbio.2020.04.014
  • Wijngaarden, L. V. (1972). One-dimensional flow of liquids containing small Gas bubbles. Annual Review of Fluid Mechanics, 4(1), 369–396. https://doi.org/10.1146/annurev.fl.04.010172.002101
  • Yamamoto, T., & Komarov, S. V. (2021). Enhancement of oscillation amplitude of cavitation bubble due to acoustic wake effect in multibubble environment. Ultrasonics Sonochemistry, 78, 105734. https://doi.org/10.1016/j.ultsonch.2021.105734
  • Yang, Y., Li, Q., Guo, X., Tu, J., & Zhang, D. (2020). Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrasonics Sonochemistry, 67, 105096. https://doi.org/10.1016/j.ultsonch.2020.105096
  • Yasui, K. (2021). Numerical simulations for sonochemistry. Ultrasonics Sonochemistry, 78, 105728. https://doi.org/10.1016/j.ultsonch.2021.105728
  • Yasui, K., Iida, Y., Tuziuti, T., Kozuka, T., & Towata, A. (2008). Strongly interacting bubbles under an ultrasonic horn. Physical Review E, 77(1), 016609. https://doi.org/10.1103/PhysRevE.77.016609
  • Yasui, K., Lee, J., Tuziuti, T., Towata, A., Kozuka, T., & Lida, Y. (2009). Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. The Journal of the Acoustical Society of America, 126(3), 973–982. https://doi.org/10.1121/1.3179677
  • Ye, Y., Dong, C., Zhang, Z., & Liang, Y. (2020a). Considering the diffusive effects of cavitation in a homogeneous mixture model. Processes, 8(6), 662. https://doi.org/10.3390/pr8060662
  • Ye, Y., Dong, C., Zhang, Z., & Liang, Y. (2020b). Modeling acoustic cavitation in homogeneous mixture framework. International Journal of Multiphase Flow, 122, 103142. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103142
  • Ye, Y., Liang, Y., Dong, C., Bu, Z., Li, G., & Zheng, Y. (2021a). Numerical modeling of ultrasonic cavitation by dividing coated microbubbles into groups. Ultrasonics Sonochemistry, 78(6), 105736. https://doi.org/10.1016/j.ultsonch.2021.105736
  • Ye, Y., Liang, Y., Dong, C., Xu, Y., & Zhang, Z. (2021b). Treating the phase change of cavitation as the source of vapor inside bubbles. Modern Physics Letters B, 35(5), 2150093. https://doi.org/10.1142/S0217984921500937
  • Yusefi, H., & Helfield, B. (2022). Ultrasound contrast imaging: Fundamentals and emerging technology. Frontiers in Physics, 10, 791145. https://doi.org/10.3389/fphy.2022.791145
  • Zhang, Y. (2013). A generalized equation for scattering cross section of spherical Gas bubbles oscillating in liquids under acoustic excitation. Journal of Fluids Engineering, 135(9), 091301. https://doi.org/10.1115/1.4024128