2,494
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of cavitator angle effect on ventilated supercavitating flow

, , , &
Article: 2215297 | Received 08 Feb 2023, Accepted 14 May 2023, Published online: 02 Jun 2023

References

  • Ahn, B. K., Jeong, S. W., Kim, J. H., Shao, S., Hong, J., & Arndt, R. E. A. (2017). An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators. International Journal of Naval Architecture and Ocean Engineering, 9(2), 227–237. https://doi.org/10.1016/j.ijnaoe.2016.10.006
  • Cao, L., Karn, A., Arndt, R.-E.-A., Wang, Z., & Hong, J. (2017). Numerical investigations of pressure distribution inside a ventilated supercavity. Journal of Fluids Engineering, 139(2), 021301. https://doi.org/10.1115/1.4035027
  • CD-adapco, S. (2020). Star-CCM+ User Guide Version 2020.1.
  • Chen, G., Sun, T., Yang, S., Miao, Z., & Tan, H. (2023). A study on the cavitating flow around an elliptical dis-shaped cavitator for non-body-of-revolution underwater vehicles. Engineering Applications of Computational Fluid Mechanics, 17(1), 2159882. https://doi.org/10.1080/19942060.2022.2159882
  • Choe, Y., & Kim, C. (2022). Computational investigation on ventilated supercavitating flows and its hydrodynamic characteristics around a high-speed underwater vehicle. Ocean Engineering, 249, 110865. https://doi.org/10.1016/j.oceaneng.2022.110865
  • Cox, R., & Clayden, W. (1955). Air entrainment at the rear of a steady cavity. In: Proceedings of the Symposium on Cavitation in Hydrodynamics. HMSO.
  • Franc, J. P., & Michel, J. M. (2004). Fundamentals of cavitation. Springer science and Business media.
  • Huang, R., Shao, S., Arndt, R. E. A., Luo, X., Wang, Y., & Hong, J. (2020). Numerical study of the behaviours of ventilated supercavities in a periodic gust flow. Journal of Fluids Engineering, 142(6), 061403–1. https://doi.org/10.1115/1.4046110
  • Jiang, Y., Jeong, S. W., Ahn, B. K., Kim, H. T., & Jung, Y. R. (2019). Experimental investigation of drag characteristics of ventilated supercavitating vehicles with different body shapes. Physics of Fluids, 31(5), 052106. https://doi.org/10.1063/1.5092542
  • Jiang, Y., Zou, Z., Li, J., Yao, Y., & Yang, L. (2021). Numerical analysis of a ventilated supercavity under periodic motion of the cavitator. Journal of Hydrodynamics, 33(6), 1216–1229. https://doi.org/10.1007/s42241-021-0103-z
  • Kadivar, E., Kadivar, E., Javadi, K., & Javadpour, S. M. (2017). The investigation of natural super-cavitation flow behind three-dimensional cavitators: Full cavitation model. Applied Mathematical Modelling, 45, 165–178. https://doi.org/10.1016/j.apm.2016.12.017
  • Karn, A., Arndt, R. E. A., & Hong, J. (2016). An experimental investigation into supercavity closure mechanisms. Journal of Fluid Mechanics, 789, 259–284. https://doi.org/10.1017/jfm.2015.680
  • Kiceniuk, T. (1954). An experimental study of the hydrodynamic forces acting on a family of cavity-producing conical bodies of revolution inclined to the flow. Department of the Navy Contract NOrd 9612, Report No. E-12.17.
  • Kilavuz, A., Sarigiguzel, F., Ozgoren, M., Durhasan, T., Sahin, B., Kavurmacioglu, L. A., Akilli, H., Sekeroglu, E., & Yaniktepe, B. (2022). The impacts of the free-surface and angle of attack on the flow strutures around a torpedo-like geometry. European Journal of Mechanics – B/Fluids, 92, 226–243. https://doi.org/10.1016/j.euromechflu.2021.12.005
  • Kim, D. H., Paramanantham, S. S., & Park, W. G. (2020). Numerical analysis of multi-phase flow around supercavitating body at various cavitator angle of attack and ventilation mass flux. Applied Sciences, 10(12), 4228. https://doi.org/10.3390/app10124228
  • Kinzel, M. P., Krane, M. H., Kirschner, I. N., & Money, M. J. (2017). A numerical assessment of the interaction of a supercavitating flow with a gas jet. Ocean Engineering, 136, 304–313. https://doi.org/10.1016/j.oceaneng.2017.03.042
  • Kirschner, I. N., Kring, D. C., Stokes, A. W., Fine, N. E., & Uhlman, J. S. (2001). Control strategies for supercavitating vehicles. Journal of Vibration and Control, 8(2), 219–242. https://doi.org/10.1177/107754602023818
  • Kochin, V., Moroz, V., Serebryakov, V., & Nechitalio, N. (2015). Hydrodynamics of supercavitating bodies at an angle of attacks under conditions of considerable effect of fluid weightiness and closeness of free border. Journal of Shipping and Ocean Engineering, 5(5), 255–265. https://doi.org/10.17265/2159-5879/2015.05.004
  • Launder, B. E., & Spalding, D. B. (1973). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289. https://doi.org/10.1016/0045-7825(74)90029-2
  • Liu, X., Yuan, X., Luo, K., & Wang, Y. (2022). Blockage effect of a wall on the hydrodynamic characteristics of a supercavitating vehicle’s aft body. Ocean Engineering, 256, 11564. https://doi.org/10.1016/j.oceaneng.2022.111564
  • Logvinovich, G. V. (1973). Hydrodynamics of free boundary flows.
  • O’Neill, J. P. (1954). Flow around bodies with attached open cavities. Calif. Inst. of Tech. Hydrodyn. Lab. Report. E-24.7.
  • Pham, V. D., Hong, J. W., Hilo, A. K., & Ahn, B. K. (2022a). Numerical study of hot-gas ventilated supercavitating flow. International Journal of Naval Architecture and Ocean Engineering, 14, 100470. https://doi.org/10.1016/j.ijnaoe.2022.100470
  • Pham, V. D., Hong, J. W., Hilo, A. K., Kim, S., & Ahn, B. K. (2022b). Experimental investigation of ventilated supercavitation behind cone-shaped with different angles and disk-shaped cavitators. International Journal of Naval Architecture and Ocean Engineering, 14, 100477. https://doi.org/10.1016/j.ijnaoe.2022.100477
  • Plesset, M. S., & Shaffer, P. A. (1948). Cavity drag in two and three dimensions. Journal of Applied Physics, 19(10), 934–939. https://doi.org/10.1063/1.1697899
  • Raman, S., & Ghosh, A. K. (2012). Investigation of the effect of cavitator angle and dimensions for a supercavitating vehicle. International Journal of Aerospace and Mechanical Engineering, 6(8), 1454–1461. https://doi.org/10.5281/zenodo.1073577
  • Reichardt, H. (1946). The laws of cavitation bubbles at axially symmetric bodies in a flow. Ministry of Aircraft Production Reports and Translations No. 766.
  • Roache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. ASME Journal of Fluids Engineering, 116(3), 405–413. https://doi.org/10.1115/1.2910291
  • Sanga, P. J., Kumar, A., & Mishra, S. K. (2022). Numerical investigation of turbulent forced convection flow in a two-dimensional curved surface cavity. Engineering Applications of Computational Fluid Mechanics, 16(1), 359–373. https://doi.org/10.1080/19942060.2021.2016491
  • Savchenko, Y. N. (2001). Supercavitation-probles and perspectives. The 4th International Symposium on Cavitation, 20–23 https://resolver.caltech.edu/CAV2001:lecture.003.
  • Self, M. W., & Ripken, J. F. (1955). Steady-state cavity studies in a free-jet water tunnel. St. Anthony Falls Hydraulic Lab. Report No. 47.
  • Shafaghat, R., Hosseinalipour, S. M., & Vahedgermi, A. (2012). Determination of supercavity shape for axisymmetric cavitators at different non-zero attack angles, using boundary element method. Journal of Mechanics, 28(2), 383–389. https://doi.org/10.1017/jmech.2012.43
  • Shao, S., Balakrishna, A., Yoon, K., Li, J., Liu, Y., & Hong, J. (2020). Effect of mounting strut and caviator shape on the ventilation demand for ventilated supercavitation. Experimental Thermal and Fluid Science, 118, 110173. https://doi.org/10.1016/j.expthermflusci.2020.110173
  • Shao, S., Karn, A., Ahn, B. K., Arndt, R. E. A., & Hong, J. (2017). A comparative study of natural and ventilated supercavitation across two closed-wall water tunnel facilities. Experimental Thermal and Fluid Science, 88, 519–529. https://doi.org/10.1016/j.expthermflusci.2017.07.005
  • Shereena, S. G., Vengadesan, S., Idichandy, V. G., & Bhattacharyya, S. K. (2013). CFD study of drag reduction in axisymmetric underwater vehicles using air jets. Engineering Applications of Computational Fluid Mechanics, 7(2), 193–209. https://doi.org/10.1080/19942060.2013.11015464
  • Sooraj, S., Vaishakh, C., Rony, R. S., & Prakash, S. B. (2017). Supercavitating flow around two-dimensional conical, sphericalm disc and stepped disc cavitators. IOP Cond. Series: Material Science and Engineering, 225, 012041. https://doi.org/10.1088/1757-899X/225/1/012041
  • Spurk, J. H. (2002). On the gas loss from ventilated supercavities. Acta Mechanica, 155(3-4), 125–135. https://doi.org/10.1007/BF01176238
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method. Pearson Education Limited.
  • Waid, R. L. (1957). Cavity shapes for circular disks at angles of attack. Calif. Inst. of Tech. Hydrodyn. Lab. Report. E-73.4.
  • Wu, Y., Liu, Y., Shao, S., & Hong, J. (2019). On the internal flow of a ventilated supercavity. Journal of Fluid Mechanics, 862, 1135–1165. https://doi.org/10.1017/jfm.2018.1006
  • Yang, W., Yang, Z., Wen, K., Yang, Z., & Zhang, Y. (2016). Numerical investigation on the gas entrainment rate on ventilated supercavity body. International Journal of Multiphase Flow, 8(4), 169–177. https://doi.org/10.1177/1757482X16654021
  • Yoon, K., Li, J., Shao, S., Karn, A., & Hong, J. (2021). Investigation of ventilation demand variation in unsteady supercavitation. Experimental Thermal and Fluid Science, 129(1), 110472. https://doi.org/10.1016/j.expthermflusci.2021.110472
  • Zou, W., Yu, K., & Arndt, R. (2015). Modeling and simulations of supercavitating vehicle with planing force in the longitudinal plane. Applied Mathematical Modeling, 39, 6008–6020. https://doi.org/10.1016/j.apm.2015.01.040