1,283
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pipeline leak diagnosis based on leak-augmented scalograms and deep learning

, &
Article: 2225577 | Received 31 Mar 2023, Accepted 10 Jun 2023, Published online: 19 Jun 2023

References

  • Ahmad, S., Ahmad, Z., Kim, C. H., & Kim, J. M. (2022). A method for pipeline leak detection based on acoustic imaging and deep learning. Sensors, 22(4), 1562. https://doi.org/10.3390/s22041562
  • Ahmad, Z., Nguyen, T.-K., & Kim, J.-M. (2023). Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network. Engineering Applications of Computational Fluid Mechanics, 17(1). https://doi.org/10.1080/19942060.2023.2165159
  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
  • Banjara, N. K., Sasmal, S., & Voggu, S. (2020). Machine learning supported acoustic emission technique for leakage detection in pipelines. International Journal of Pressure Vessels and Piping, 188, 104243. https://doi.org/10.1016/j.ijpvp.2020.104243
  • Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., & Steger, C. (2018). Improving unsupervised defect segmentation by applying structural similarity to autoencoders. ArXiv Preprint ArXiv:1807.02011.
  • Caesarendra, W., Kosasih, B., Tieu, A. K., Zhu, H., Moodie, C. A. S., & Zhu, Q. (2016). Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing. Mechanical Systems and Signal Processing, 72-73, 134–159. https://doi.org/10.1016/j.ymssp.2015.10.020
  • Chan, T. K., Chin, C. S., & Zhong, X. (2019). Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection. IEEE Access, 6, 78846–78867. https://doi.org/10.1109/ACCESS.2018.2885444
  • Che, T. C., Duan, H. F., & Lee, P. J. (2021). Transient wave-based methods for anomaly detection in fluid pipes: A review. Mechanical Systems and Signal Processing, 160, 107874. https://doi.org/10.1016/j.ymssp.2021.107874
  • Cheng, Y., Lin, M., Wu, J., Zhu, H., & Shao, X. (2021). Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network. Knowledge-Based Systems, 216, 106796. https://doi.org/10.1016/j.knosys.2021.106796
  • Cody, R. A., Tolson, B. A., & Orchard, J. (2020). Detecting leaks in water distribution pipes using a deep autoencoder and hydroacoustic spectrograms. Journal of Computing in Civil Engineering, 34(2), 4020001. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000881
  • Das, A. K., Suthar, D., & Leung, C. K. Y. (2019). Machine learning based crack mode classification from unlabeled acoustic emission waveform features. Cement and Concrete Research, 121, 42–57. https://doi.org/10.1016/J.CEMCONRES.2019.03.001
  • Elforjani, M., & Mba, D. (2009). Detecting natural crack initiation and growth in slow speed shafts with the Acoustic Emission technology. Engineering Failure Analysis, 16(7), 2121–2129. https://doi.org/10.1016/j.engfailanal.2009.02.005
  • Erfani, S. M. H., & Goharian, E. (2023). Vision-based texture and color analysis of waterbody images using computer vision and deep learning techniques. Journal of Hydroinformatics, 25(3), 835–850. https://doi.org/10.2166/hydro.2023.146
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Gupta, S. B. (2022). A hybrid image denoising method based on discrete wavelet transformation with pre-Gaussian filtering. Indian Journal Of Science And Technology, 15(43), 2317–2324. https://doi.org/10.17485/IJST/v15i43.1570
  • Hu, Z., Tariq, S., & Zayed, T. (2021). A comprehensive review of acoustic based leak localization method in pressurized pipelines. In Mechanical systems and signal processing (Vol. 161). Academic Press. https://doi.org/10.1016/j.ymssp.2021.107994.
  • Hübner, H. B., Duarte, M. A. V., & da Silva, R. B. (2020). Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks. The International Journal of Advanced Manufacturing Technology, 110(7–8), 1833–1849. https://doi.org/10.1007/s00170-020-05902-w
  • Jiao, J., Zhao, M., Lin, J., & Ding, C. (2019). Deep coupled dense convolutional network with complementary data for intelligent fault diagnosis. IEEE Transactions on Industrial Electronics, 66(12), 9858–9867. https://doi.org/10.1109/TIE.2019.2902817
  • Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020a). A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing, 417, 36–63. https://doi.org/10.1016/j.neucom.2020.07.088
  • Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020b). A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing, 417, 36–63. https://doi.org/10.1016/j.neucom.2020.07.088
  • Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020c). Residual joint adaptation adversarial network for intelligent transfer fault diagnosis. Mechanical Systems and Signal Processing, 145, 106962. https://doi.org/10.1016/j.ymssp.2020.106962
  • Kim, H., Lee, J., Kim, T., Jin Park, S., Kim, H., & Doo Jung, I. (n.d.). Advanced thermal fluid leakage detection system with machine learning algorithm for pipe-in-pipe structure. https://ssrn.com/abstract=4147041.
  • Kim, S. H. (2022). Dimensionless impedance method for the transient response of pressurized pipeline system. Engineering Applications of Computational Fluid Mechanics, 16(1), 1641–1654. https://doi.org/10.1080/19942060.2022.2108500
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
  • Li, S., Song, Y., & Zhou, G. (2018). Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement: Journal of the International Measurement Confederation, 115, 39–44. https://doi.org/10.1016/j.measurement.2017.10.021
  • Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked convolutional auto-encoders for hierarchical feature extraction. Artificial neural networks and machine learning–ICANN 2011: 21st international conference on artificial neural networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21 (pp. 52–59).
  • Nguyen, T. K., Ahmad, Z., & Kim, J. M. (2021). A scheme with acoustic emission hit removal for the remaining useful life prediction of concrete structures. Sensors, 21(22), 7761. https://doi.org/10.3390/s21227761
  • Piñal-Moctezuma, F., Delgado-Prieto, M., & Romeral-Martínez, L. (2020). An acoustic emission activity detection method based on short-term waveform features: Application to metallic components under uniaxial tensile test. Mechanical Systems and Signal Processing, 142, 106753. https://doi.org/10.1016/j.ymssp.2020.106753
  • Pipeline Repair Guide. (2020). Applications repairs under pressure Solutions for various forms of damage Joining different types of pipe Overcoming misaligned pipes.
  • Prosvirin, A. E., Ahmad, Z., & Kim, J. M. (2021). Global and local feature extraction using a convolutional autoencoder and neural networks for diagnosing centrifugal pump mechanical faults. IEEE Access, 9, 65838–65854. https://doi.org/10.1109/ACCESS.2021.3076571
  • Rahimi, M., Alghassi, A., Ahsan, M., & Haider, J. (2020). Deep learning model for industrial leakage detection using acoustic emission signal. Informatics, 7(4), 49. https://doi.org/10.3390/informatics7040049
  • Rai, A., Ahmad, Z., Hasan, M. J., & Kim, J.-M. (2021). A novel pipeline leak detection technique based on acoustic emission features and two-sample Kolmogorov–Smirnov test. Sensors, 21(24), 8247. https://doi.org/10.3390/s21248247
  • Rai, A., & Kim, J. M. (2021). A novel pipeline leak detection approach independent of prior failure information. Measurement, 167, 108284. https://doi.org/10.1016/j.measurement.2020.108284
  • Shukla, H., & Piratla, K. (2020). Leakage detection in water pipelines using supervised classification of acceleration signals. Automation in Construction, 117, 103256. https://doi.org/10.1016/j.autcon.2020.103256
  • Ullah, H., Zhao, Y., Abdalla, F. Y. O., & Wu, L. (2022). Fast local Laplacian filtering based enhanced medical image fusion using parameter-adaptive PCNN and local features-based fuzzy weighted matrices. Applied Intelligence, 52(7), 7965–7984. https://doi.org/10.1007/s10489-021-02834-0
  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11).
  • Xu, C., Du, S., Gong, P., Li, Z., Chen, G., & Song, G. (2020). An improved method for pipeline leakage localization with a single sensor based on modal acoustic emission and empirical mode decomposition with Hilbert Transform. IEEE Sensors Journal, 20(10), 5480–5491. https://doi.org/10.1109/JSEN.2020.2971854
  • Xu, T., Zeng, Z., Huang, X., Li, J., & Feng, H. (2021). Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector. Process Safety and Environmental Protection, 153, 167–177. https://doi.org/10.1016/j.psep.2021.07.024
  • Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. Proceedings of the IEEE International Conference on Computer Vision, 2018–2025. https://doi.org/10.1109/ICCV.2011.6126474
  • Zhao, H., Liu, J., Chen, H., Chen, J., Li, Y., Xu, J., & Deng, W. (2022). Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network. IEEE Transactions on Reliability, 1–15. https://doi.org/10.1109/TR.2022.3225245
  • Zhou, M., Yang, Y., Xu, Y., Hu, Y., Cai, Y., Lin, J., & Pan, H. (2021). A pipeline leak detection and localization approach based on ensemble TL1DCNN. IEEE Access, 9, 47565–47578. https://doi.org/10.1109/ACCESS.2021.3068292