672
Views
1
CrossRef citations to date
0
Altmetric
Research Article

2D Modelling and energy analysis of entrapped air-pocket propagation and spring-like geysering in the drainage pipeline system

, , , &
Article: 2227662 | Received 27 Feb 2023, Accepted 29 May 2023, Published online: 26 Jun 2023

References

  • Atrabi, H. B., Hosoda, T., & Tada, A. (2015). Simulation of air cavity advancing into a straight duct. Journal of Hydraulic Engineering, 141(1), 1–9. Article id 04014068. https://doi.org/10.1061/(asce)hy.1943-7900.0000953.
  • Bousso, S., Daynou, M., & Fuamba, M. (2013). Numerical modeling of mixed flows in storm water systems: Critical review of literature. Journal of Hydraulic Engineering, 139(4), 385–396. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000680
  • Chan, S. N., Cong, J., & Lee, J. H. W. (2018). 3D numerical modeling of geyser formation by release of entrapped air from horizontal pipe into vertical shaft. Journal of Hydraulic Engineering, 144(3), 1–16. Article 04017071. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001416.
  • Chang, L., & Wei, W. R. (2022). Numerical study on the effect of tangential intake on vortex dropshaft assessment using pressure distributions. Engineering Applications of Computational Fluid Mechanics, 16(1), 1100–1110. https://doi.org/10.1080/19942060.2022.2072954
  • Chegini, T., & Leon, A. S. (2020). Numerical investigation of field-scale geysers in a vertical shaft. Journal of Hydraulic Research, 58(3), 503–515. https://doi.org/10.1080/00221686.2019.1625817
  • Chen, S. Z., Zheng, F. F., Liu, X., & Garambois, P. A. (2021). Pressure-balanced Saint-Venant equations for improved asymptotic modelling of pipe flow. Journal of Hydro-Environment Research, 37, 46–56. https://doi.org/10.1016/j.jher.2021.05.001
  • Choi, Y. (2018). Numerical investigations on sewer geysers. Oregon State University.
  • Cong, J. (2016). Experimental modelling of air-water interaction in horizontal pipe with vertical riser. The Hong Kong University of Science and Technology.
  • Cong, J., Chan, S. N., & Lee, J. H. W. (2017). Geyser formation by release of entrapped air from horizontal pipe into vertical shaft. Journal of Hydraulic Engineering, 143(9), 1–13. Article 04017039. https://doi.org/10.1061/(asce)hy.1943-7900.0001332.
  • Duan, H. F., Ghidaoui, M. S., & Tung, Y. K. (2010). Energy analysis of viscoelasticity effect in pipe fluid transients. Journal of Applied Mechanics, 77(4), 1–5. Article 044503. https://doi.org/10.1115/1.4000915.
  • Duan, H. F., Meniconi, S., Lee, P. J., Brunone, B., & Ghidaoui, M. S. (2017). Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows. Journal of Hydraulic Engineering, 143(7), 1–11. Article 04017015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001304.
  • Feng, W., Shao, Z. Y., Gong, H. F., Xu, L., Yost, S. A., Ma, H. Y., & Chai, H. X. (2022). Experimental and numerical investigation of flow distribution pattern at a T-shape roadway crossing under extreme storms. Engineering Applications of Computational Fluid Mechanics, 16(1), 2286–2300. https://doi.org/10.1080/19942060.2022.2141329
  • Guo, Q. Z., & Song, C. C. S. (1990). Surging in urban storm drainage systems. Journal of Hydraulic Engineering, 116(12), 1523–1537. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:12(1523)
  • Hamam, M. A., & McCorquodale, J. A. (1982). Transient conditions in the transition from gravity to surcharged sewer flow. Canadian Journal of Civil Engineering, 9(2), 189–196. https://doi.org/10.1139/l82-022
  • He, J. L., Hou, Q. Z., Lian, J. J., Tijsseling, A. S., Bozkus, Z., Laanearu, J., & Lin, L. (2022). Three-dimensional CFD analysis of liquid slug acceleration and impact in a voided pipeline with end orifice. Engineering Applications of Computational Fluid Mechanics, 16(1), 1444–1463. https://doi.org/10.1080/19942060.2022.2095440
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Jelev, I. (1989). The damping of flow and pressure oscillations in water hammer analysis. Journal of Hydraulic Research, 27(1), 91–114. https://doi.org/10.1080/00221688909499246
  • Kan, K., Xu, Y., Li, Z., Xu, H., Chen, H., Zi, D., Gao, Q., & Shen, L. (2023). Numerical study of instability mechanism in the air-core vortex formation process. Engineering Applications of Computational Fluid Mechanics, 17(1), 1–18. Article 2156926. https://doi.org/10.1080/19942060.2022.2156926
  • Karney, B. W. (1990). Energy relations in transient closed-conduit flow. Journal of Hydraulic Engineering, 116(10), 1180–1196. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1180)
  • Leon, A. S. (2019). Mechanisms that lead to violent geysers in vertical shafts. Journal of Hydraulic Research, 57(3), 295–306. https://doi.org/10.1080/00221686.2018.1459895
  • Leon, A. S., Elayeb, I. S., & Tang, Y. (2019). An experimental study on violent geysers in vertical pipes. Journal of Hydraulic Research, 57(3), 283–294. https://doi.org/10.1080/00221686.2018.1494052
  • Lewis, J. W. (2011). A physical investigation of air/water interactions leading to geyser events in rapid filling pipelines. University of Michigan.
  • Li, F., Duan, H. F., Yan, H. X., & Tao, T. (2015). Multi-Objective optimal design of detention tanks in the urban stormwater drainage system: Framework development and case study. Water Resources Management, 29(7), 2125–2137. https://doi.org/10.1007/s11269-015-0931-0
  • Li, J., & McCorquodale, A. (1999). Modeling mixed flow in storm sewers. Journal of Hydraulic Engineering, 125(11), 1170–1180. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1170)
  • Li, Q., Liang, Q. H., & Xia, X. L. (2020). A novel 1D-2D coupled model for hydrodynamic simulation of flows in drainage networks. Advances in Water Resources, 137(3), 1–14. Article 103519. https://doi.org/10.1016/j.advwatres.2020.103519
  • Liu, J. C., Qian, Y., Zhu, D. Z., Zhang, J., Edwini-Bonsu, S., & Zhou, F. Y. (2022). Numerical study on the mechanisms of storm geysers in a vertical riser-chamber system. Journal of Hydraulic Research, 60(2), 341–356. https://doi.org/10.1080/00221686.2021.2001589
  • Liu, L. J., Shao, W. Y., & Zhu, D. Z. (2020). Experimental study on stormwater geyser in vertical shaft above junction chamber. Journal of Hydraulic Engineering, 146(2), 1–14. Article 04019055. https://doi.org/10.1061/(asce)hy.1943-7900.0001660.
  • Molina, J., & Ortiz, P. (2020). A continuous finite element solution of fluid interface propagation for emergence of cavities and geysering. Computer Methods in Applied Mechanics and Engineering, 359, 1–36. Article 112746. https://doi.org/10.1016/j.cma.2019.112746.
  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12–49. https://doi.org/10.1016/0021-9991(88)90002-2
  • Qian, Y., Zhu, D. Z., Liu, L. J., Shao, W. Y., Edwini-Bonsu, S., & Zhou, F. Y. (2020). Numerical and experimental study on mitigation of storm geysers in Edmonton, Alberta, Canada. Journal of Hydraulic Engineering, 146(3), 1–13. Article 04019069. https://doi.org/10.1061/(asce)hy.1943-7900.0001684.
  • Rokhzadi, A., & Fuamba, M. (2022). Energy exchange analysis of a closed conduit transient mixed flow following an air pocket entrapment using a simplified shock-fitting approach. Urban Water Journal, 19(3), 271–284. https://doi.org/10.1080/1573062X.2021.1995764
  • Shao, Z. S. (2013). Two-dimensional hydrodynamic modelling of two-phase flow for understanding geyser phenomena in urban stormwater system. University of Kentucky.
  • Shao, Z. Y. S., & Yost, S. A. (2018). Numerical investigation of driving forces in a geyser event using a dynamic multi-phase Navier-Stokes model. Engineering Applications of Computational Fluid Mechanics, 12(1), 493–505. https://doi.org/10.1080/19942060.2018.1459322
  • Son, G., & Hur, N. (2002). A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles. Numerical Heat Transfer, Part B: Fundamentals, 42(6), 523–542. https://doi.org/10.1080/10407790260444804
  • Sun, F., Yang, Z. S., & Huang, Z. F. (2014). Challenges and solutions of urban hydrology in Beijing. Water Resources Management, 28(11), 3377–3389. https://doi.org/10.1007/s11269-014-0697-9
  • Sussman, M., & Puckett, E. G. (2000). A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2), 301–337. https://doi.org/10.1006/jcph.2000.6537
  • Sussman, M., Smereka, P., & Osher, S. (1994). A level Set approach for computing solutions to incompressible Two-phase flow. Journal of Computational Physics, 114(1), 146–159. https://doi.org/10.1006/jcph.1994.1155
  • Vasconcelos, J. G., & Wright, S. J. (2005). Experimental investigation of surges in a stormwater storage tunnel. Journal of Hydraulic Engineering, 131(10), 853–861. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(853)
  • Vasconcelos, J. G., & Wright, S. J. (2007). Comparison between the two-component pressure approach and current transient flow solvers. Journal of Hydraulic Research, 45(2), 178–187. https://doi.org/10.1080/00221686.2007.9521758
  • Vasconcelos, J. G., & Wright, S. J. (2011). Geysering generated by large Air pockets released through water-filled ventilation shafts. Journal of Hydraulic Engineering, 137(5), 543–555. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000332
  • Wang, K. H., Shen, Q., & Zhang, B. X. (2003). Modeling propagation of pressure surges with the formation of an air pocket in pipelines. Computers & Fluids, 32(9), 1179–1194. https://doi.org/10.1016/S0045-7930(02)00103-2
  • Wang, X. S., Zhang, J., Chen, Y. H., & Kuai, Z. L. (2023). Numerical study of rising taylor bubbles driven by buoyancy and additional pressure. International Journal of Multiphase Flow, 159(2), 1–12. Article 104309. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104309.
  • Wright, S. J. (2021). A New look at geyser formation in sewer systems. Journal of Water Management Modeling, 29(12), 1–18. Article C478. https://doi.org/10.11796/jwmm.c478.
  • Wright, S. J., Lewis, J. W., & Vasconcelos, J. G. (2011). Physical processes resulting in geysers in rapidly filling storm-water tunnels. Journal of Irrigation and Drainage Engineering, 137(3), 199–202. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000176
  • Zhang, Y., Chen, Y. H., Qian, S. T., Xu, H., Feng, J. G., & Wang, X. S. (2022). Experimental study on geysers in covered manholes during release of Air pockets in stormwater systems. Journal of Hydraulic Engineering, 148(5), 1–8. Article 06022003. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001978
  • Zhou, F., Hicks, F., & Steffler, P. (2004). Analysis of effects of air pocket on hydraulic failure of urban drainage infrastructure. Canadian Journal of Civil Engineering, 31(1), 86–94. https://doi.org/10.1139/l03-077
  • Zhou, L., Liu, D. Y., & Karney, B. (2013). Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. Journal of Hydraulic Engineering, 139(9), 949–959. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000750
  • Zhou, L., Lu, Y. Q., Karney, B., Wu, G. Y., Elong, A., & Huang, K. (2023). Energy dissipation in a rapid filling vertical pipe with trapped air. Journal of Hydraulic Research, 61(1), 120–132. https://doi.org/10.1080/00221686.2022.2132309
  • Zhu, J. H., Duan, X. Y., Wu, G. H., Li, X. Q., & Tang, X. L. (2022). Numerical investigations of hydraulic transient and thermodynamic characteristics of water flow impacting air pocket inside pipe based on CLSVOF. Journal of Hydroinformatics, 24(4), 856–874. https://doi.org/10.2166/hydro.2022.020