1,022
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive analysis of melting enhancement by circular Y-shaped fins in a vertical shell-and-tube heat storage system

, , , , , , , & show all
Article: 2227682 | Received 10 Mar 2023, Accepted 03 Jun 2023, Published online: 28 Jun 2023

References

  • Abed, A. M., Mohammed, H. I., Patra, I., Mahdi, J. M., Arshad, A., Sivaraman, R., Ibrahem, R. K., Al-Qrimli, F. A., Dhahbi, S., & Talebizadehsardari, P. (2022). Improving the melting performance in a triple-pipe latent heat storage system using hemispherical and quarter-spherical fins with a staggered arrangement. Frontiers in Chemistry, 10, 1018265. https://doi.org/10.3389/fchem.2022.1018265
  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018). Renewable energy systems to enhance buildings thermal performance and decrease construction costs. Energy Procedia, 152, 312–317. https://doi.org/10.1016/j.egypro.2018.09.138
  • Başal, B., & Ünal, A. (2013). Numerical evaluation of a triple concentric-tube latent heat thermal energy storage. Solar Energy, 92, 196–205. https://doi.org/10.1016/j.solener.2013.02.032
  • Bazri, S., Badruddin, I. A., Naghavi, M. S., & Bahiraei, M. (2018). A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy, 118, 761–778. https://doi.org/10.1016/j.renene.2017.11.030
  • Belazreg, A., Abderrahmane, A., Qasem, N. A. A., Sene, N., Mohammed, S., Younis, O., Guedri, K., Nasajpour-Esfahani, N., & Toghraie, D. (2022). Effect of Y-shaped fins on the performance of shell-and-tube thermal energy storage unit. Case Studies in Thermal Engineering, 40, 102485. https://doi.org/10.1016/j.csite.2022.102485
  • Bilgen, S., Kaygusuz, K., & Sari, A. (2004). Renewable energy for a clean and sustainable future. Energy Sources, 26(12), 1119–1129. https://doi.org/10.1080/00908310490441421
  • Brent, A., Voller, V., & Reid, K. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications, 13(3), 297–318. https://doi.org/10.1080/10407788808913615
  • Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216–1226. https://doi.org/10.1109/5.940290
  • Chen, C., Zhang, H., Gao, X., Xu, T., Fang, Y., & Zhang, Z. (2016). Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM. Energy Conversion and Management, 126, 889–897. https://doi.org/10.1016/j.enconman.2016.08.068
  • Coady, D., Parry, I., Sears, L., & Shang, B. (2017). How large are global fossil fuel subsidies? World Development, 91, 11–27. https://doi.org/10.1016/j.worlddev.2016.10.004
  • Coyle, E. D., & Simmons, R. A. (2014). Understanding the global energy crisis. Purdue University Press.
  • Deng, S., Nie, C., Jiang, H., & Ye, W.-B. (2019). Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. International Journal of Heat and Mass Transfer, 130, 532–544. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.126
  • Dincer, I., & Dost, S. (1996). A perspective on thermal energy storage systems for solar energy applications. International Journal of Energy Research, 20(6), 547–557. https://doi.org/10.1002/(SICI)1099-114X(199606)20:6<547::AID-ER173>3.0.CO;2-S
  • Dincer, I., & Rosen, M. A. (2021). Thermal energy storage: Systems and applications. John Wiley & Sons.
  • Ding, M., Chen, G., Xu, W., Jia, C., & Luo, H. (2020). Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science, 2(3), 264–280. https://doi.org/10.1016/j.nanoms.2019.09.011
  • Dong, X., Hao, G., & Yu, R. (2022). Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior. Engineering Applications of Computational Fluid Mechanics, 16(1), 588–629. https://doi.org/10.1080/19942060.2022.2026820
  • Ebadi, S., Tasnim, S. H., Aliabadi, A. A., & Mahmud, S. (2018). Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Applied Thermal Engineering, 141, 724–740. https://doi.org/10.1016/j.applthermaleng.2018.05.091
  • Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764. https://doi.org/10.1016/j.rser.2014.07.113
  • Fadl, M., & Eames, P. C. (2019). Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Applied Thermal Engineering, 151, 90–99. https://doi.org/10.1016/j.applthermaleng.2019.01.102
  • Fteiti, M. A., Ghalambaz, M., Younis, O., Sheremet, M., & Ismael, M. (2023). The influence of the metal foam layer shape on the thermal charging response time of a latent heat thermal energy storage system. Journal of Energy Storage, 58, 106284. https://doi.org/10.1016/j.est.2022.106284
  • Hauer, A. (2007). Sorption theory for thermal energy storage. In H. Ö. Paksoy (Ed.), Thermal energy storage for sustainable energy consumption (pp. 393–408). Springer.
  • Huang, G., Curt, S. R., Wang, K., & Markides, C. N. (2020). Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: A review. Nano Materials Science, 2(3), 183–203. https://doi.org/10.1016/j.nanoms.2020.03.008
  • Huang, X., Guo, X., Ding, Y., Wei, R., Mao, S., Zhu, Y., & Bao, Z. (2021). Amorphous silicon from low-temperature reduction of silica in the molten salts and its lithium-storage performance. Chinese Chemical Letters, 32(2), 598–603. https://doi.org/10.1016/j.cclet.2020.11.041
  • Karar, O., Emani, S., Marappa Gounder, R., Myo Thant, M. M., Mukhtar, H., Sharifpur, M., & Sadeghzadeh, M. (2021). Experimental and numerical investigation on convective heat transfer in actively heated bundle-pipe. Engineering Applications of Computational Fluid Mechanics, 15(1), 848–864. https://doi.org/10.1080/19942060.2021.1920466
  • Karekezi, S., Kithyoma, W., & Initiative, E. (2003). Renewable energy development. Paper presented at the workshop on African Energy Experts on Operationalizing the NEPAD Energy Initiative, June.
  • Kibria, M., Anisur, M., Mahfuz, M., Saidur, R., & Metselaar, I. (2014). Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. International Communications in Heat and Mass Transfer, 53, 71–78. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.023
  • Liu, Z., Liu, Z., Liu, G., Yang, X., & Yan, J. (2022). Melting assessment on the effect of nonuniform Y-shaped fin upon solid–liquid phase change in a thermal storage tank. Applied Energy, 321, 119330. https://doi.org/10.1016/j.apenergy.2022.119330
  • Liu, Z., Liu, Z., Yang, X., & Yang, X. (2020). Melting performance analysis of phase change material in latent heat storage unit with Y-shaped fins. Energy proceeding, Volume 13: Low Carbon Cities and Urban Energy Systems: Part II, Tokio, Japan.
  • Longeon, M., Soupart, A., Fourmigué, J.-F., Bruch, A., & Marty, P. (2013). Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 112, 175–184. https://doi.org/10.1016/j.apenergy.2013.06.007
  • Mahdavi, M., Tiari, S., & Pawar, V. (2020). A numerical study on the combined effect of dispersed nanoparticles and embedded heat pipes on melting and solidification of a shell and tube latent heat thermal energy storage system. Journal of Energy Storage, 27, 101086. https://doi.org/10.1016/j.est.2019.101086
  • Mahdi, J. M., Lohrasbi, S., Ganji, D. D., & Nsofor, E. C. (2019). Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles. Energy Conversion and Management, 180, 949–961. https://doi.org/10.1016/j.enconman.2018.11.038
  • Mahdi, J. M., Lohrasbi, S., & Nsofor, E. C. (2019). Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. International Journal of Heat and Mass Transfer, 137, 630–649. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.111
  • Mahdi, J. M., & Nsofor, E. C. (2017). Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination. International Journal of Heat and Mass Transfer, 109, 417–427. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.016
  • Mahmoud, M., Mohammed, H., Mahdi, J., Bokov, D., Ben Khedher, N., Alshammari, N., Talebizadehsardari, P., & Yaïci, W. (2021). Melting enhancement in a triple-tube latent heat storage system with sloped fins. Nanomaterials, 11(11), 3153. https://www.mdpi.com/2079-4991/11/11/3153.
  • Mat, S., Al-Abidi, A. A., Sopian, K., Sulaiman, M. Y., & Mohammad, A. T. (2013). Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Conversion and Management, 74, 223–236. https://doi.org/10.1016/j.enconman.2013.05.003
  • Menni, Y., Ameur, H., Sharifpur, M., & Ahmadi, M. H. (2021). Effects of in-line deflectors on the overall performance of a channel heat exchanger. Engineering Applications of Computational Fluid Mechanics, 15(1), 512–529. https://doi.org/10.1080/19942060.2021.1893820
  • Mobedi, M., Hooman, K., & Tao, W.-Q. (2022). Solid-Liquid thermal energy storage: Modeling and applications. CRC Press.
  • Najim, F. T., Mohammed, H. I., Al-Najjar, H. M. T., Thangavelu, L., Mahmoud, M. Z., Mahdi, J. M., Tiji, M. E., Yaïci, W., & Talebizadehsardari, P. (2022). Improved melting of latent heat storage using fin arrays with non-uniform dimensions and distinct patterns. Nanomaterials, 12(3), 403. https://doi.org/10.3390/nano12030403
  • Nie, C., Deng, S., & Liu, J. (2020). Numerical investigation of PCM in a thermal energy storage unit with fins: Consecutive charging and discharging. Journal of Energy Storage, 29, 101319. https://doi.org/10.1016/j.est.2020.101319
  • Nithyanandam, K., & Pitchumani, R. (2014). Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy, 64, 793–810. https://doi.org/10.1016/j.energy.2013.10.095
  • Pahamli, Y., Hosseini, M., Ranjbar, A., & Bahrampoury, R. (2018). Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger. Applied Mathematics and Computation, 316, 30–42. https://doi.org/10.1016/j.amc.2017.07.066
  • Pakrouh, R., Hosseini, M., Ranjbar, A., & Bahrampoury, R. (2015). A numerical method for PCM-based pin fin heat sinks optimization. Energy Conversion and Management, 103, 542–552. https://doi.org/10.1016/j.enconman.2015.07.003
  • Pfleger, N., Bauer, T., Martin, C., Eck, M., & Wörner, A. (2015). Thermal energy storage–overview and specific insight into nitrate salts for sensible and latent heat storage. Beilstein Journal of Nanotechnology, 6(1), 1487–1497. https://doi.org/10.3762/bjnano.6.154
  • Rostami, M. H., Najafi, G., Motevalli, A., Sidik, N. A. C., & Harun, M. A. (2021). Evaluation and improvement of thermal energy of heat exchangers with SWCNT, GQD nanoparticles and PCM (RT82). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 79(1), 153–168. https://doi.org/10.37934/arfmts.79.1.153168
  • Rubitherm, R. (2022). Product information, data sheet of RT35. https://www.rubitherm.eu/media/products/datasheets/Techdata_RT35_EN_02092022.PDF
  • Saeed, A. M., Abderrahmane, A., Qasem, N. A., Mourad, A., Alhazmi, M., Ahmed, S. E., & Guedri, K. (2022). A numerical investigation of a heat transfer augmentation finned pear-shaped thermal energy storage system with nano-enhanced phase change materials. Journal of Energy Storage, 53, 105172. https://doi.org/10.1016/j.est.2022.105172
  • Shafi, J., Ghalambaz, M., Fteiti, M., Ismael, M., & Ghalambaz, M. (2022). Computational modeling of latent heat thermal energy storage in a shell-tube unit: Using neural networks and anisotropic metal foam. Mathematics, 10(24), 4774. https://doi.org/10.3390/math10244774
  • Tiji, M. E., Eisapour, M., Yousefzadeh, R., Azadian, M., & Talebizadehsardari, P. (2020). A numerical study of a PCM-based passive solar chimney with a finned absorber. Journal of Building Engineering, 32, 101516. https://doi.org/10.1016/j.jobe.2020.101516
  • Wang, H., Fu, F., Huang, M., Feng, Y., Han, D., Xi, Y., Xiong, W., Yang, D., & Niu, L. (2022). Lignin-based materials for electrochemical energy storage devices. Nano Materials Science, https://doi.org/10.1016/j.nanoms.2022.01.002
  • Wang, P., Wang, X., Huang, Y., Li, C., Peng, Z., & Ding, Y. (2015). Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs). Applied Energy, 142, 328–336. https://doi.org/10.1016/j.apenergy.2014.12.050
  • Wang, Y., Abed, A. M., Singh, P. K., Tag-Eldin, E., & Arsalanloo, A. (2022). Multi-Stage optimization of LHTESS by utilization of Y-shaped Fin in a rectangular enclosure. Case Studies in Thermal Engineering, 38, 102348. https://doi.org/10.1016/j.csite.2022.102348
  • Xiang, J., Deng, L., Zhou, C., Zhao, H., Huang, J., & Tao, S. (2022). Heat transfer performance and structural optimization of a novel micro-channel heat sink. Chinese Journal of Mechanical Engineering, 35(1), 1–12. https://doi.org/10.1186/s10033-022-00704-5
  • Yan, H., Yang, H., Luo, J., Yin, N., Tan, Z., & Shi, Q. (2021). Thermodynamic insights into n-alkanes phase change materials for thermal energy storage. Chinese Chemical Letters, 32(12), 3825–3832. https://doi.org/10.1016/j.cclet.2021.05.017
  • Ye, W.-B., Zhu, D.-S., & Wang, N. (2011). Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Applied Thermal Engineering, 31(17), 3871–3884. https://doi.org/10.1016/j.applthermaleng.2011.07.035
  • Zhao, C., Lu, W., & Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 84(8), 1402–1412. https://doi.org/10.1016/j.solener.2010.04.022
  • Zou, C., Zhao, Q., Zhang, G., & Xiong, B. (2016). Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B, 3(1), 1–11. https://doi.org/10.1016/j.ngib.2016.02.001