1,204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Automatic optimization of centrifugal pump for energy conservation and efficiency enhancement based on response surface methodology and computational fluid dynamics

, , , , , , & show all
Article: 2227686 | Received 10 Apr 2023, Accepted 11 Jun 2023, Published online: 30 Jun 2023

References

  • Anwar, M., Rasul, M. G., Ashwath, N., & Rahman, M. M. (2018). Optimisation of second-generation biodiesel production from Australian native stone fruit oil using response surface method. Energies, 11(10), 2566. https://doi.org/10.3390/en11102566
  • Capurso, T., Bergamini, L., & Torresi, M. (2022). A new generation of centrifugal pumps for high conversion efficiency. Energy Conversion and Management, 256, 115341. https://doi.org/10.1016/j.enconman.2022.115341
  • He, D., Zhao, L., Chang, Z., Zhang, Z., Guo, P., & Bai, B. (2021). On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquid distribution in the impeller. Journal of Petroleum Science and Engineering, 203, 108587. https://doi.org/10.1016/j.petrol.2021.108587
  • Hergt, P. H. (1999). Pump research and development: past, present, and future. Journal of Fluids Engineering, https://doi.org/10.1115/1.2822198
  • Huang, R., Zhang, Z., Zhang, W., Mou, J., Zhou, P., & Wang, Y. (2020). Energy performance prediction of the centrifugal pumps by using a hybrid neural network. Energy, 213, 119005. https://doi.org/10.1016/j.energy.2020.119005
  • Li, H., Han, Y., Shi, W., Tiganik, T., & Zhou, L. (2022). Automatic optimization of centrifugal pump based on adaptive single-objective algorithm and computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 16(1), 2222–2242. https://doi.org/10.1080/19942060.2022.2143901
  • Li, T. Z., & Yang, X. L. (2018). Probabilistic stability analysis of subway tunnels combining multiple failure mechanisms and response surface method. International Journal of Geomechanics, 18(12), 04018167. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001315
  • Lin, T., Li, X., Zhu, Z., Xie, J., Li, Y., & Yang, H. (2021a). Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine. Renewable Energy, 163, 41–55. https://doi.org/10.1016/j.renene.2020.08.109
  • Lin, T., Zhu, Z., Li, X., Li, J., & Lin, Y. (2021b). Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine. Renewable Energy, 168, 31–44. https://doi.org/10.1016/j.renene.2020.12.040
  • Lin, Y., Li, X., Zhu, Z., Wang, X., Lin, T., & Cao, H. (2022). An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge. Energy, 246, 123323. https://doi.org/10.1016/j.energy.2022.123323
  • Napreenko, K. S., & Lamtyugina, A. V. (2021). Hydraulic losses optimization methods used in air conditioning system valve design for different closure angles. In IOP conference series: Materials science and engineering (Vol. 1027, No. 1, p. 0012022). IOP Publishing. https://doi.org/10.1088/1757-899X/1027/1/012022
  • Nishi, Y., Suzuo, R., Sukemori, D., & Inagaki, T. (2020). Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance. Renewable Energy, 155, 1103–1117. https://doi.org/10.1016/j.renene.2020.03.186
  • Norouzi, M., Fazeli, A., & Tavakoli, O. (2020). Phenol contaminated water treatment by photocatalytic degradation on electrospun Ag/TiO2 nanofibers: Optimization by the response surface method. Journal of Water Process Engineering, 37, 101489. https://doi.org/10.1016/j.jwpe.2020.101489
  • Perissinotto, R. M., Verde, W. M., Biazussi, J. L., Bulgarelli, N. A. V., Fonseca, W. D. P., de Castro, M. S., de Moraes Franklin, E., & Bannwart, A. C. (2021). Flow visualization in centrifugal pumps: A review of methods and experimental studies. Journal of Petroleum Science and Engineering, 203, 108582. https://doi.org/10.1016/j.petrol.2021.108582
  • Pudjianto, D., Djapic, P., Aunedi, M., Gan, C. K., Strbac, G., Huang, S., & Infield, D. (2013). Smart control for minimizing distribution network reinforcement cost due to electrification. Energy Policy, 52, 76–84. https://doi.org/10.1016/j.enpol.2012.05.021
  • Šavar, M., Kozmar, H., & Sutlović, I. (2009). Improving centrifugal pump efficiency by impeller trimming. Desalination, 249(2), 654–659. https://doi.org/10.1016/j.desal.2008.11.018
  • Shamsuddeen, M. M., Ma, S. B., Kim, S., Yoon, J. H., Lee, K. H., Jung, C., & Kim, J. H. (2021). Effect of an inducer-type guide vane on hydraulic losses at the inter-stage flow passage of a multistage centrifugal pump. Processes, 9(3), 526. https://doi.org/10.3390/pr9030526
  • Shankar, V. K. A., Umashankar, S., Paramasivam, S., & Hanigovszki, N. (2016). A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 181, 495–513. https://doi.org/10.1016/j.apenergy.2016.08.070
  • Trinh, T. K., & Kang, L. S. (2010). Application of response surface method as an experimental design to optimize coagulation tests. Environmental Engineering Research, 15(2), 63–70. https://doi.org/10.4491/eer.2010.15.2.063
  • Vasuthevan, H., & Brümmer, A. (2018). Multiphase-flow simulation of a rotating rectangular profile within a cylinder in terms of hydraulic loss mechanisms. In IOP conference series: Materials science and engineering (Vol. 425, No. 1, p. 0012002). IOP Publishing. https://doi.org/10.1088/1757-899X/425/1/012002
  • Wang, C., Shi, W., Wang, X., Jiang, X., Yang, Y., Li, W., & Zhou, L. (2017). Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy, 187, 10–26. https://doi.org/10.1016/j.apenergy.2016.11.046
  • Wang, C. N., Yang, F. C., Nguyen, V. T. T., & Vo, N. T. (2022). CFD analysis and optimum design for a centrifugal pump using an effectively artificial intelligent algorithm. Micromachines, 13(8), 1208. https://doi.org/10.3390/mi13081208
  • Wang, D., Parkinson, S., Miao, W., Jia, H., Crawford, C., & Djilali, N. (2012). Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems. Applied Energy, 96, 104–114. https://doi.org/10.1016/j.apenergy.2011.12.005
  • Wu, C., Pu, K., Li, C., Wu, P., Huang, B., & Wu, D. (2022). Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump. Energy, 246, 123394. https://doi.org/10.1016/j.energy.2022.123394
  • Yıldız, B. S. (2020). Optimal design of automobile structures using moth-flame optimization algorithm and response surface methodology. Materials Testing, 62(4), 371–377. https://doi.org/10.3139/120.111494
  • Yusri, I. M., Majeed, A. A., Mamat, R., Ghazali, M. F., Awad, O. I., & Azmi, W. H. (2018). A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renewable and Sustainable Energy Reviews, 90, 665–686. https://doi.org/10.1016/j.rser.2018.03.095
  • Zhao, J., Pei, J., Yuan, J., & Wang, W. (2022a). Energy-saving oriented optimization design of the impeller and volute of a multi-stage double-suction centrifugal pump using artificial neural network. Engineering Applications of Computational Fluid Mechanics, 16(1), 1974–2001. https://doi.org/10.1080/19942060.2022.2127913
  • Zhao, X., Zhang, D., Zhang, R., & Xu, B. (2022b). A comparative study of Gaussian process regression with other three machine learning approaches in the performance prediction of centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(8), 3938–3949. https://doi.org/10.1177/09544062211050542
  • Zhou, X., Zhang, H., Qiu, R., Liang, Y., Wu, G., Xiang, C., & Yan, X. (2019). A hybrid time MILP model for the pump scheduling of multi-product pipelines based on the rigorous description of the pipeline hydraulic loss changes. Computers & Chemical Engineering, 121, 174–199. https://doi.org/10.1016/j.compchemeng.2018.10.001