871
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of fuel-hydrogen levels on combustion, operability, and emission parameters of CH4/H2/O2/CO2 stratified flames in a dual-swirl gas turbine burner

, &
Article: 2229406 | Received 13 Dec 2022, Accepted 20 Jun 2023, Published online: 19 Jul 2023

References

  • Alhuyi, M., Alavi, M., Salem, M., & Assad, M. (2022). Utilization of hydrogen in gas turbines: A comprehensive review. International Journal of Low-Carbon Technologies, 17, 513–519. https://doi.org/10.1093/ijlct/ctac025
  • Ali, A., Nemitallah, M. A., Abdelhafez, A., Hussain, M., Kamal, M. M., & Habib, M. A. (2021). Comparative analysis of the stability and structure of premixed C3H8/O2/CO2 and C3H8/O2/N2 flames for clean flexible energy production. Energy, 214, 1–10. https://doi.org/10.1016/j.energy.2020.118887
  • Ali, A., Nemitallah, M. A., Abdelhafez, A., Imteyaz, B., Kamal, M. M., & Habib, M. A. (2020). Numerical and experimental study of swirl premixed CH4/H2/O2/CO2 flames for controlled-emissions gas turbines. International Journal of Hydrogen Energy, 45(53), 29616–29629. https://doi.org/10.1016/j.ijhydene.2020.07.210
  • Aliyu, M., Nemitallah, M., Said, S., Abdelhafez, A., Mansir, I., & Habib, M. (2022). Role of adiabatic flame temperature on controlling operability of a micromixer-based Gas turbine combustor holding premixed Oxy-flames for carbon capture. Journal of Energy Resources Technology, 144(10), 102307. https://doi.org/10.1115/1.4053983
  • Borchert, U., & Szymczyk, J. A. (2011). Fluidic analyses of a model Gas turbine combustion chamber with and without combustion under actual operating conditions. XX. International Conference Research and Practice Didact. Mod. Mech. Eng., Stralsund, NETL, Morgantown, WV.
  • Boushaki, T., Dhué, Y., Selle, L., Ferret, B., & Poinsot, T. (2012). Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: Experimental and numerical analysis. International Journal of Hydrogen Energy, 37(11), 9412–9422. https://doi.org/10.1016/j.ijhydene.2012.03.037
  • Boyce, M. (2011). Gas turbine engineering (Handbook-4th Edition). Butterworth-Heinemann.
  • Boyce, M. P. (2012). Combustors. In Gas turbine Eng. Handb (4th ed., pp. 427–490). Elsevier.
  • Bulat, G., Skipper, D., McMillan, R., & Syed, K. (2007). Active control of fuel splits in gas turbine DLE Combustion systems. Vol. 2 Turbo Expo 2007, ASMEDC; 2007, p. 135–44.
  • Cohen, J., Hagen, G., Banaszuk, A., Becz, S., & Mehta, P.. (2011). Attenuation of gas turbine combustor pressure oscillations using symmetry breaking. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (pp. 60).
  • Coppalle, A., & Vervisch, P. (1983). The total emissivities of high-temperature flames. Combustion and Flame, 49(1–3), 101–108. https://doi.org/10.1016/0010-2180(83)90154-2
  • ANSYS Fluent (2011). Theory guide. ANSYS Inc.
  • Galizzi, C., & Escudié, D. (2006). Experimental analysis of an oblique laminar flame front propagating in a stratified flow. Combustion and Flame, 145(3), 621–634. https://doi.org/10.1016/j.combustflame.2005.12.001
  • Gersen, S., Anikin, N. B., Mokhov, A. V., & Levinsky, H. B. (2008). Ignition properties of methane/hydrogen mixtures in a rapid compression machine. International Journal of Hydrogen Energy, 33(7), 1957–1964. https://doi.org/10.1016/j.ijhydene.2008.01.017
  • Göttgens, J., Mauss, F., & Peters, N. (1992). Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames. Symp Combust, 24, 129–135. https://doi.org/10.1016/S0082-0784(06)80020-2
  • Guo, H., Smallwood, G. J., Liu, F., Ju, Y., & Gülder, ÖL. (2005). The effect of hydrogen addition on flammability limit and NO emission in ultra-lean counterflow CH4/air premixed flames. Proceedings of the Combustion Institute, 30(1), 303–311. https://doi.org/10.1016/j.proci.2004.08.177
  • Haque, M. A., Nemitallah, M. A., Abdelhafez, A., Mansir, I. B., & Habib, M. A. (2020). Review of fuel/oxidizer-flexible combustion in gas turbines. Energy & Fuels, 34(9), 10459–10485. https://doi.org/10.1021/acs.energyfuels.0c02097
  • Haque, M. A., Nemitallah, M. A., Abdelhafez, A., Mokheimer, E., & Habib, M. A. (2022). Analysis of methane, propane, and syngas oxy-flames in a fuel-flex gas turbine combustor for carbon capture. International Journal of Energy Research, 46(7), 8657–8675. https://doi.org/10.1002/er.7745
  • Imteyaz, B., Habib, M., Nemitallah, M., Abdelhafez, A., & Ben-Mansour, R. (2020). Operability of a premixed combustor holding hydrogen-enriched oxy-methane flames: An experimental and numerical study. International Journal of Energy Research, 2020, 1–15. https://doi.org/10.1002/er.5998
  • Johansson, R., Leckner, B., Andersson, K., & Johnsson, F. (2011). Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combustion and Flame, 158(5), 893–901. https://doi.org/10.1016/j.combustflame.2011.02.001
  • Joshi, N. D., Epstein, M. J., Durlak, S., Marakovits, S., & Sabla, P. E. (1994). Development of a fuel air premixer for aeroderivative dry low emissions combustors. Proc ASME Turbo Expo, 3. https://doi.org/10.1115/94-GT-253
  • Kang, T., & Kyritsis, D. C. (2005). Methane flame propagation in compositionally stratified gases. Combustion Science and Technology, 177(11), 2191–2210. https://doi.org/10.1080/00102200500240836
  • Kang, T., & Kyritsis, D. C. (2009). Phenomenology of methane flame propagation into compositionally stratified, gradually richer mixtures. Proceedings of the Combustion Institute, 32(1), 979–985. https://doi.org/10.1016/j.proci.2008.06.007
  • Kiameh, P. (2003). Power generation handbook: Selection, applications, operation, and maintenance. McGraw-Hill Handbooks.
  • Kim, D. (2019). Review on the development trend of hydrogen Gas turbine combustion technology. J Korean Soc Combust, 24, 1–10.
  • Kim, H. S., Arghode, V. K., & Gupta, A. K. (2009). Flame characteristics of hydrogen-enriched methane-air premixed swirling flames. International Journal of Hydrogen Energy, 34(2), 1063–1073. https://doi.org/10.1016/j.ijhydene.2008.10.035
  • Kim, K. T., & Hochgreb, S. (2011). The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations. Combustion and Flame, 158(12), 2482–2499. https://doi.org/10.1016/j.combustflame.2011.05.016
  • Kim, T. Y., Park, C., Oh, S., & Cho, G. (2016). The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine. Energy, 115, 386–396. https://doi.org/10.1016/j.energy.2016.09.025
  • Li, Z., Cheng, X., Wei, W., Qiu, L., & Wu, H. (2017). Effects of hydrogen addition on laminar flame speeds of methane, ethane and propane: Experimental and numerical analysis. International Journal of Hydrogen Energy, 42(38), 24055–24066. https://doi.org/10.1016/j.ijhydene.2017.07.190
  • Miao, J., Leung, C. W., Huang, Z., Cheung, C. S., Yu, H., & Xie, Y. (2014). Laminar burning velocities, Markstein lengths, and flame thickness of liquefied petroleum gas with hydrogen enrichment. International Journal of Hydrogen Energy, 39(24), 13020–13030. https://doi.org/10.1016/j.ijhydene.2014.06.087
  • Mousavi, S., Kamali, R., Sotoudeh, F., Karimi, N., & Jeung, S. (2020). Numerical investigation of the effects of swirling Hot Co-flow on MILD combustion of a hydrogen–methane blend. Journal of Energy Resources Technology, 142(11), 112301. https://doi.org/10.1115/1.4047251
  • Muller, U., Bollig, M., & Peters, N. (1997). Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combustion and Flame, 108(3), 349–356. https://doi.org/10.1016/S0010-2180(96)00110-1
  • Najafi, B., Haghighatshoar, F., Ardabili, S., S. Band, S., Chau, K. w., & Mosavi, A. (2021). Effects of low-level hydroxy as a gaseous additive on performance and emission characteristics of a dual fuel diesel engine fueled by diesel/biodiesel blends. Engineering Applications of Computational Fluid Mechanics, 15(1), 236–250. https://doi.org/10.1080/19942060.2021.1871960
  • Nemitallah, M., Haque, A., Hussain, M., Abdelhafez, A., & Habib, M. (2022). Stratified and hydrogen combustion techniques for higher turndown and lower emissions in Gas turbines. Journal of Energy Resources Technology, 144(2), 020801. https://doi.org/10.1115/1.4052541
  • Nemitallah, M. A., Haque, M. A., Hussain, M., Abdelhafez, A., & Habib, M. A. (2021). Stratified and hydrogen combustion techniques for higher turndown and lower emissions in gas turbines. Journal of Energy Resources Technology, 2021, 1–42. https://doi.org/10.1115/1.4052541
  • Nemitallah, M. A., Imteyaz, B., Abdelhafez, A., & Habib, M. A. (2019). Experimental and computational study on stability characteristics of hydrogen-enriched oxy-methane premixed flames. Applied Energy, 250, 433–443. https://doi.org/10.1016/j.apenergy.2019.05.087
  • Nogenmyr, K.-J., Petersson, P., Bai, X. S., Fureby, C., Collin, R., Lantz, A., Linne, M., & Aldén, M. (2011). Structure and stabilization mechanism of a stratified premixed low swirl flame. Proceedings of the Combustion Institute, 33(1), 1567–1574. https://doi.org/10.1016/j.proci.2010.06.011
  • Okafor, E. C., Nagano, Y., & Kitagawa, T. (2016). Experimental and theoretical analysis of cellular instability in lean H 2 -CH 4 -air flames at elevated pressures. international Journal of Hydrogen Energy, 41(15), 6581–6592. https://doi.org/10.1016/j.ijhydene.2016.02.151
  • Pasquier, N., Lecordier, B., Trinité, M., & Cessou, A. (2007). An experimental investigation of flame propagation through a turbulent stratified mixture. Proceedings of the Combustion Institute, 31, 1567–1574. https://doi.org/10.1016/j.proci.2006.07.118
  • Peng, C., Tong, L., & Cao, X. (2016). Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk. Annals of Nuclear Energy, 94, 451–460. https://doi.org/10.1016/j.anucene.2016.04.029
  • Porter, R., Liu, F., Pourkashanian, M., Williams, A., & Smith, D. (2010). Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(14), 2084–2094. https://doi.org/10.1016/j.jqsrt.2010.04.028
  • Ritchie, H., & Roser, M. (2020). CO2 and GHG emissions. Our World Data. https://ourworldindata.org/emissions-by-fuel.
  • Roy, R., & Gupta, A. (2022). Measurement of lean blowoff limits in swirl-stabilized distributed combustion with varying heat release intensities. Journal of Energy Resources Technology, 144(8), 082301. https://doi.org/10.1115/1.4052795
  • Salem, E. K. I. J. (2018). Numerical simulations of premixed flames of multi component fuels/air mixture and their applications. University of Kentucky. https://doi.org/10.13023/etd.2019.113.
  • Samuelsen, S., & Burn, R. (2006). Quick- Mix, lean burn (RQL) combustor. Gas Turbine Handb., n.d., pp. 227–33.
  • Smith, T. F., Shen, Z. F., & Friedman, J. N. (1982). Evaluation of coefficients for the weighted Sum of gray gases model. Journal of Heat Transfer, 104(4), 602–608. https://doi.org/10.1115/1.3245174
  • Strakey, P., Sidwell, T., & Ontko, J. (2007). Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor. Proceedings of the Combustion Institute, 31(2), 3173–3180. https://doi.org/10.1016/j.proci.2006.07.077
  • Sui, C., Zhang, J., Zhang, L., Hu, X., & Zhang, B. (2021). Large eddy simulation of premixed hydrogen-rich gas turbine combustion based on reduced reaction mechanisms. Engineering Applications of Computational Fluid Mechanics, 15(1), 798–814. https://doi.org/10.1080/19942060.2021.1918581
  • Tang, A., Xu, Y., Pan, J., Yang, W., Jiang, D., & Lu, Q. (2015). Combustion characteristics and performance evaluation of premixed methane/air with hydrogen addition in a micro-planar combustor. Chemical Engineering Science, 131, 235–242. https://doi.org/10.1016/j.ces.2015.03.030
  • Wu, F., Kelley, A. P., Zhu, D., & Law, C. K. (2011). Further study on effects of hydrogen addition on laminar flame speeds of fuel-air mixtures US National Combustion Meeting Atlanta Ga.
  • Yu, G., Law, C. K., & Wu, C. K. (1986). Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition. Combustion and Flame, 63(3), 339–347. https://doi.org/10.1016/0010-2180(86)90003-9
  • Yuan, J., Ju, Y., & Law, C. K. (2007). On flame-front instability at elevated pressures. Proceedings of the Combustion Institute, 31(1), 1267–1274. https://doi.org/10.1016/j.proci.2006.07.180
  • Zimont, V., Polifke, W., Bettelini, M., & Weisenstein, W. (1997). An efficient computational model for premixed turbulent combustion at high reynolds numbers based on a turbulent flame speed closure. Vol. 2 Coal, biomass altern. Fuels; combust. Fuels; Oil Gas appl. Cycle innov. American Society of Mechanical Engineers.
  • Zimont, V. L. (1977). To computations of turbulent combustion of partially premixed gases, chemical physics of combustion and explosion processes. In Combustion of multi-phase and gas systems (pp. 77–80). OIKhF.
  • Zimont, V. L., & Lipatnikov, A. N. (1992). A model of heat release in premixed turbulent combustion. In T. V. Ondranin (Ed.), Applied problems of aeromechanics and geospase physics (pp. 48–58). MIPT.