943
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Applications of intelligent methods in solar heaters: an updated review

, ORCID Icon, , , , , & show all
Article: 2229882 | Received 23 Jan 2023, Accepted 21 Jun 2023, Published online: 31 Jul 2023

References

  • Abujazar, M. S. S., Fatihah, S., Ibrahim, I. A., Kabeel, A. E., & Sharil, S. (2018). Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model. Journal of Cleaner Production, 170(January), Elsevier: 147–159. https://doi.org/10.1016/J.JCLEPRO.2017.09.092
  • Afshari, F., Sözen, A., Khanlari, A., Doğuş Tuncer, A., & Şirin, C. (2020). Effect of turbulator modifications on the thermal performance of cost-effective alternative solar Air heater. Renewable Energy, 158(October), Pergamon: 297–310. https://doi.org/10.1016/J.RENENE.2020.05.148
  • Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135(January), Pergamon: 110114. https://doi.org/10.1016/J.RSER.2020.110114
  • Ahmadi, M. A., & Mahmoudi, B. (2016). Development of robust model to estimate Gas–Oil interfacial tension using least square support vector machine: Experimental and modeling study. The Journal of Supercritical Fluids, 107(January), Elsevier: 122–128. https://doi.org/10.1016/J.SUPFLU.2015.08.012
  • Ahmadi, M. H., Sadeghzadeh, M., Raffiee, A. H., & Chau, K.-W. (2019). Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Engineering Applications of Computational Fluid Mechanics, 13(1), 327–336. https://doi.org/10.1080/19942060.2019.1582109
  • Ahmed, A., Ge, T., Peng, J., Yan, W. C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards Net-zero energy buildings: A review. Energy and Buildings, 256(February), Elsevier: 111755. https://doi.org/10.1016/J.ENBUILD.2021.111755
  • Aidinlou, H. R., & Nikbakht, A. M. (2019). Intelligent modeling of thermohydraulic behavior in solar Air heaters with artificial neural networks. Neural Computing and Applications, 31(8), Springer: 3279–3293. https://doi.org/10.1007/S00521-017-3269-0
  • Akhbari, M., Rahimi, A., & Hatamipour, M. S. (2020). Modeling and experimental study of a triangular channel solar Air heater. Applied Thermal Engineering, 170(April), Pergamon: 114902. https://doi.org/10.1016/J.APPLTHERMALENG.2020.114902
  • Alarifi, I. M., Nguyen, H. M., Bakhtiyari, A. N., & Asadi, A. (2019a). Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/Oil hybrid nanofluid. Materials, 12(21), 3628. https://doi.org/10.3390/ma12213628
  • Alarifi, I. M., Nguyen, H. M., Bakhtiyari, A. N., & Asadi, A. (2019b). Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/Oil hybrid nanofluid. Materials, 12(21), MDPI AG: 3628. https://doi.org/10.3390/ma12213628
  • Al-Askaree, E. H., & Al-Muhsen, N. F. O. (2023). Experimental investigation on thermal performance of solar water heater equipped with serpentine Fin core heat exchanger. Cleaner Engineering and Technology, 12(February), Elsevier: 100593. https://doi.org/10.1016/J.CLET.2022.100593
  • Alotaibi, S., Amooie, M. A., Ahmadi, M. H., Nabipour, N., & Chau, K. w. (2020). Modeling thermal conductivity of ethylene glycol-based nanofluids using multivariate adaptive regression splines and group method of data handling artificial neural network. Engineering Applications of Computational Fluid Mechanics, 14(1), Taylor & Francis: 379–390. https://doi.org/10.1080/19942060.2020.1715843
  • Baig, W., & Ali, H. M. (2019). An experimental investigation of performance of a double pass solar Air heater with foam aluminum thermal storage medium. Case Studies in Thermal Engineering, 14(September), Elsevier: 100440. https://doi.org/10.1016/J.CSITE.2019.100440
  • Bhattacharyya, S., Hari Raghavendran, B., & Paul, A. R. (2020). The effect of circular hole spring tape on the turbulent heat transfer and entropy analysis in a heat exchanger tube: An experimental study. Taylor & Francis, 1–20. https://doi.org/10.1080/08916152.2020.1787560.
  • Bhattacharyya, S., Pathak, M., Sharifpur, M., Chamoli, S., & Ewim, D. R. E. (2021). Heat transfer and exergy analysis of solar Air heater tube with helical corrugation and perforated circular disc inserts. Journal of Thermal Analysis and Calorimetry, 145(3), Springer Science and Business Media B.V.: 1019–1034. https://doi.org/10.1007/S10973-020-10215-X/METRICS
  • Bhattacharyya, S., Sarkar, D., Roy, R., Chakraborty, S., Goel, V., & Almatrafi, E. (2021). Application of New artificial neural network to predict heat transfer and thermal performance of a solar Air-heater tube. Sustainability, 13(13), Multidisciplinary Digital Publishing Institute: 7477. https://doi.org/10.3390/SU13137477
  • Blázquez, C. S., Borge-Diez, D., Nieto, I. M., Martín, A. F., & González-Aguilera, D. (2021). Multi-Parametric evaluation of electrical, biogas and natural Gas geothermal source heat pumps. Renewable Energy, 163(January), Pergamon: 1682–1691. https://doi.org/10.1016/J.RENENE.2020.10.080
  • Calderón-Ramírez, M., Gomez-Náfate, J. A., Ríos-Fuentes, B., Rico-Martínez, R., Martínez-Nolazco, J. J., & Botello-Álvarez, J. E. (2022). Analysis of the thermal efficiency of flat plate solar Air heaters considering environmental conditions using artificial neural networks. Revista Mexicana de Ingeniería Química, 21(3), 1–3. https://doi.org/10.24275/RMIQ/SIM2833
  • Chargui, R., Bechir, N., & Tashtoush, B. (2022). A novel hybrid solar water heater system integrated with thermoelectric generators: Experimental and numerical analysis. Journal of Cleaner Production, 368(September), Elsevier: 133119. https://doi.org/10.1016/J.JCLEPRO.2022.133119
  • Choi, J., Kang, B., & Cho, H. (2014). Performance comparison between R22 and R744 solar-geothermal hybrid heat pumps according to heat source conditions. Renewable Energy, 71(November), Pergamon: 414–424. https://doi.org/10.1016/J.RENENE.2014.05.057
  • Chokphoemphun, S., Hongkong, S., Thongdaeng, S., & Chokphoemphun, S. (2020). Experimental study and neural networks prediction on thermal performance assessment of grooved channel Air heater. International Journal of Heat and Mass Transfer, 163(December), Pergamon: 120397. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120397
  • Decuyper, M., Stockhoff, M., Vandenberghe, S., & Ying, X. (2019). An overview of overfitting and Its solutions. Journal of Physics: Conference Series, 1168(2), IOP Publishing: 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
  • Devi Thangavel, K., Seerengasamy, U., Palaniappan, S., & Sekar, R. (2023). Prediction of factors for controlling of green house farming with fuzzy based multiclass support vector machine. Alexandria Engineering Journal, 62(January), Elsevier: 279–289. https://doi.org/10.1016/J.AEJ.2022.07.016
  • Engel, E., & Engel, N. (2022). A review on machine learning applications for solar plants. Sensors, 22(23), Multidisciplinary Digital Publishing Institute: 9060. https://doi.org/10.3390/S22239060
  • Esen, H., Ozgen, F., Esen, M., & Sengur, A. (2009). Modelling of a New solar Air heater through least-squares support vector machines. Expert Systems with Applications, 36(7), Pergamon: 10673–10682. https://doi.org/10.1016/J.ESWA.2009.02.045
  • Fang, G., Chan, M. y., Yan, H., Chen, W., Deng, S., & Liu, X. (2020). An experimental study on the operating performances of a novel Bed-based Air source heat pump (B-ASHP) system. Energy and Buildings, 223(September), Elsevier: 110191. https://doi.org/10.1016/J.ENBUILD.2020.110191
  • Ghalandari, M., Shahrestani, M. I., Maleki, A., Shadloo, M. S., & Assad, M. E. H. (2021). Applications of intelligent methods in various types of heat exchangers: A review. Journal of Thermal Analysis and Calorimetry, 145(4), Springer Science and Business Media B.V.: 1837–1848. https://doi.org/10.1007/S10973-020-10425-3/METRICS
  • Ghritlahre, H. K. (2018). Development of feed-forward back-propagation neural model to predict the energy and exergy analysis of solar Air heater. Trends in Renewable Energy, 4(2), Future Energy Service and Publishing: 213–235. https://doi.org/10.17737/TRE.2018.4.2.0078
  • Ghritlahre, H. K., Chandrakar, P., & Ahmad, A. (2020a). Solar Air heater performance prediction using artificial neural network technique with relevant input variables. Archives of Thermodynamics, 41(3), Polska Akademia Nauk: 255–282. https://doi.org/10.24425/ATHER.2020.134579
  • Ghritlahre, H. K., Chandrakar, P., & Ahmad, A. (2020b). Application of ANN model to predict the performance of solar Air heater using relevant input parameters. Sustainable Energy Technologies and Assessments, 40(August), Elsevier: 100764. https://doi.org/10.1016/J.SETA.2020.100764
  • Ghritlahre, H. K., Chandrakar, P., & Ahmad, A. (2021). A comprehensive review on performance prediction of solar air heaters using artificial neural network. Annals of Data Science, 8(3), 405–449. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40745-019-00236-1.
  • Ghritlahre, H. K., & Prasad, R. K. (2017). Prediction of thermal performance of unidirectional flow porous Bed solar Air heater with optimal training function using artificial neural network. Energy Procedia, 109(March), Elsevier: 369–376. https://doi.org/10.1016/J.EGYPRO.2017.03.033
  • Ghritlahre, H. K., & Prasad, R. K. (2018a). Investigation of thermal performance of unidirectional flow porous Bed solar Air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Science and Engineering Progress, 6(June), Elsevier: 226–235. https://doi.org/10.1016/J.TSEP.2018.04.006
  • Ghritlahre, H. K., & Prasad, R. K. (2018b). Exergetic performance prediction of solar Air heater using MLP, GRNN and RBF models of artificial neural network technique. Journal of Environmental Management, 223(October), Academic Press: 566–575. https://doi.org/10.1016/J.JENVMAN.2018.06.033
  • Ghritlahre, H. K., & Prasad, R. K. (2018c). Prediction of heat transfer of Two different types of roughened solar Air heater using artificial neural network technique. Thermal Science and Engineering Progress, 8(December), Elsevier: 145–153. https://doi.org/10.1016/J.TSEP.2018.08.014
  • Ghritlahre, H. K., & Prasad, R. K. (2019). Modelling of back propagation neural network to predict the thermal performance of porous Bed solar Air heater. Archives of Thermodynamics, 40(4), Polish Academy of Sciences: 103–128. https://doi.org/10.24425/ATHER.2019.131430
  • Ghritlahre, H. K., & Verma, M. (2021). Accurate prediction of exergetic efficiency of solar Air heaters using various predicting methods. Journal of Cleaner Production, 288(March), Elsevier: 125115. https://doi.org/10.1016/J.JCLEPRO.2020.125115
  • Goel, V., Hans, V. S., Singh, S., Kumar, R., Pathak, S. K., Singla, M., Bhattacharyya, S., Almatrafi, E., Gill, R. S., & Saini, R. P. (2021). A comprehensive study on the progressive development and applications of solar Air heaters. Solar Energy, 229(November), Elsevier Ltd: 112–147. https://doi.org/10.1016/j.solener.2021.07.040
  • Goodson, T., Briens, F., Camarasa, C., Delmastro, C., Staas, L., & Petrichenko, K. (2022). Heating. https://www.iea.org/reports/heating.
  • Gunasekaran, N., Manoj Kumar, P., Raja, S., Sharavanan, S., Avinas, K., Aakash Kannan, P., & Gokul, S. (2021). Investigation on ETC solar water heater using twisted tape inserts. Materials Today: Proceedings, 47(January), Elsevier: 5011–5016. https://doi.org/10.1016/J.MATPR.2021.04.586
  • Hassan, H., Abo-Elfadl, S., & El-Dosoky, M. F. (2020). An experimental investigation of the performance of New design of solar Air heater (tubular). Renewable Energy, 151(May), Pergamon: 1055–1066. https://doi.org/10.1016/J.RENENE.2019.11.112
  • Jain, P. K., Lanjewar, A., Jain, R., & Rana, K. B. (2021). Performance analysis of multi-Gap V-roughness with staggered elements of solar Air heater based on artificial neural network and experimental investigations. Environmental Science and Pollution Research, 28(25), Springer: 32905–32920. https://doi.org/10.1007/S11356-021-12875-0
  • Janardhana, K., Sivakumar, A., Gladson, G. J. N., Ramesh, C., Syed Musthafa, A., & Gopinathan, R. (2022). Study on the performance of a flat plate solar water heater using a hybrid nanofluid. Materials Today: Proceedings, 69, 1145–1149. August. Elsevier. https://doi.org/10.1016/J.MATPR.2022.08.181.
  • Jouybari, N. F., & Staffan Lundström, T. (2020). Performance improvement of a solar Air heater by covering the absorber plate with a thin porous material. Energy, 190(January), Pergamon: 116437. https://doi.org/10.1016/J.ENERGY.2019.116437
  • Kalogirou, S. A. (2000). Performance prediction of a solar water heater using artificial neural networks. World Renewable Energy Congress VI, January. Pergamon, 2163–2166. https://doi.org/10.1016/B978-008043865-8/50465-7.
  • Kalogirou, S. A., Panteliou, S., & Dentsoras, A. (1999). Artificial neural networks used for the performance prediction of a thermosiphon solar water heater. Renewable Energy, 18(1), Pergamon: 87–99. https://doi.org/10.1016/S0960-1481(98)00787-3
  • Kashyap, T., Thakur, R., Sethi, M., Tripathi, R. K., Thakur, A., Kumar, S., Kumar, P., Goel, B., & Chand, S. (2023). The influence of reflector on the thermal performance of single and double pass solar Air heater: A comprehensive review. Materials Today: Proceedings, 72, 1260–1269. September. Elsevier. https://doi.org/10.1016/J.MATPR.2022.09.297.
  • khosrojerdi, S., Vakili, M., Yahyaei, M., & Kalhor, K. (2016). Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. International Communications in Heat and Mass Transfer, 74, Elsevier B.V.: 11–17. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.010
  • Li, H., Liu, Z., Liu, K., & Zhang, Z. (2017). Predictive power of machine learning for optimizing solar water heater performance: The potential application of high-throughput screening. International Journal of Photoenergy, 2017, Hindawi Limited, 1–10. https://doi.org/10.1155/2017/4194251
  • Liu, Z., Li, H., Zhang, X., Jin, G., & Cheng, K. (2015). Novel method for measuring the heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters based on artificial neural networks and support vector machine. Energies, 8(8), Multidisciplinary Digital Publishing Institute: 8814–8834. https://doi.org/10.3390/EN8088814
  • Mahmood, A., & Wang, J. L. (2021). Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy & Environmental Science, 14(1), Royal Society of Chemistry: 90–105. https://doi.org/10.1039/D0EE02838J
  • Maleki, A., Haghighi, A., & Mahariq, I. (2021). Machine learning-based approaches for modeling thermophysical properties of hybrid nanofluids: A comprehensive review. Journal of Molecular Liquids, Elsevier B.V. 322, 114843. https://doi.org/10.1016/j.molliq.2020.114843.
  • Mohanty, S., Rout, A., Patra, P. K., & Sahoo, S. S. (2017). ANFIS based solar radiation data forecasting for energy & economic study of solar water heaters in eastern India. International Journal of Control Theory and Applications, 10(April), 179–190.
  • Nazari, M., Jafarmadar, S., & Khalilarya, S. (2022). Exergy and thermoeconomic analyses of serpentine tube flat-plate solar water heaters coated with CuO nanostructures. Case Studies in Thermal Engineering, 35(July), Elsevier: 102072. https://doi.org/10.1016/J.CSITE.2022.102072
  • Noushabadi, A. S., Dashti, A., Raji, M., Zarei, A., & Mohammadi, A. H. (2020). Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models. Renewable Energy, 158(October), Pergamon: 465–473. https://doi.org/10.1016/J.RENENE.2020.04.146
  • Oztop, H. F., Bayrak, F., & Hepbasli, A. (2013). Energetic and exergetic aspects of solar Air heating (solar collector) systems. Renewable and Sustainable Energy Reviews, 21(May), Pergamon: 59–83. https://doi.org/10.1016/J.RSER.2012.12.019
  • Pachori, H., Choudhary, T., & Sheorey, T. (2022). Significance of thermal energy storage material in solar Air heaters. Materials Today: Proceedings, 56(January), Elsevier: 126–134. https://doi.org/10.1016/J.MATPR.2021.12.516
  • Patel, R., Kulkarni, K. G., Havaldar, S. N., & Deshmukh, V. N. (2023). A review on the factors that decrease the performance of a solar water heater. Materials Today: Proceedings, 72, 3068–3074. September. Elsevier. https://doi.org/10.1016/J.MATPR.2022.09.064.
  • Qin, D., Liu, J., & Zhang, G. (2021). A novel solar-geothermal system integrated with earth–to–Air heat exchanger and solar Air heater with phase change material—numerical modelling, experimental calibration and parametrical analysis. Journal of Building Engineering, 35(March), Elsevier: 101971. https://doi.org/10.1016/J.JOBE.2020.101971
  • Rajkumar, P., Raja, M., Stephen Sagayaraj, A., Melvin Jones, J., Suseendhar, P., & Karthiga, M. (2022). Performance enhancement & prediction of solar Air heater with quatrefoil shaped artificial roughness using adaptive neuro fuzzy inference system. November. Institute of Electrical and Electronics Engineers (IEEE), 1579–1583. https://doi.org/10.1109/ICECAA55415.2022.9936587
  • Ramezanizadeh, M., Ahmadi, M. A., Ahmadi, M. H., & Alhuyi Nazari, M. (2019). Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. Journal of Thermal Analysis and Calorimetry, 137(1), 307–316. https://doi.org/10.1007/s10973-018-7916-1
  • Ramezanizadeh, M., Ahmadi, M. H., Nazari, M. A., Sadeghzadeh, M., & Chen, L. (2019). A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 114(October), Pergamon: 109345. https://doi.org/10.1016/J.RSER.2019.109345
  • Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Açıkkalp, E. (2018). Application of nanofluids in thermosyphons: A review. Journal of Molecular Liquids, 272(December), Elsevier: 395–402. https://doi.org/10.1016/J.MOLLIQ.2018.09.101
  • Rashidi, M. M., Alhuyi Nazari, M., Mahariq, I., & Ali, N. (2023). Modeling and sensitivity analysis of thermal conductivity of ethylene glycol-water based nanofluids with alumina nanoparticles. Experimental Techniques, 2022, March. Springer: 83–90. https://doi.org/10.1007/S40799-022-00567-4
  • Rashidi, M. M., Nazari, M. A., Mahariq, I., Assad, M. E. H., Ali, M. E., Almuzaiqer, R., Nuhait, A., & Murshid, N. (2021). Thermophysical properties of hybrid nanofluids and the proposed models: An updated comprehensive study. Nanomaterials, 11(11), Multidisciplinary Digital Publishing Institute: 3084. https://doi.org/10.3390/NANO11113084
  • Rashidi, S., Karimi, N., & Yan, W. M. (2022). Applications of machine learning techniques in performance evaluation of solar desalination systems – A concise review. Engineering Analysis with Boundary Elements, 144(November), Elsevier: 399–408. https://doi.org/10.1016/J.ENGANABOUND.2022.08.031
  • Razavi, R., Sabaghmoghadam, A., Bemani, A., Baghban, A., Chau, K. w., & Salwana, E. (2019). Application of ANFIS and LSSVM strategies for estimating thermal conductivity enhancement of metal and metal oxide based nanofluids. Engineering Applications of Computational Fluid Mechanics, 13(1), Taylor & Francis: 560–578. https://doi.org/10.1080/19942060.2019.1620130
  • Rizvi, Z. H., Husain, S. M. B., Haider, H., & Wuttke, F. (2020). Effective thermal conductivity of sands estimated by group method of data handling (GMDH). Materials Today: Proceedings, 26(January), Elsevier: 2103–2107. https://doi.org/10.1016/J.MATPR.2020.02.454
  • Said, Z., Ghodbane, M., Tiwari, A. K., Ali, H. M., Boumeddane, B., & Ali, Z. M. (2021). 4E (energy, exergy, economic, and environment) examination of a small LFR solar water heater: An experimental and numerical study. Case Studies in Thermal Engineering, 27(October), Elsevier: 101277. https://doi.org/10.1016/J.CSITE.2021.101277
  • Said, Z., Syam Sundar, L., Rezk, H., Nassef, A. M., Ali, H. M., & Sheikholeslami, M. (2021). Optimizing density, dynamic viscosity, thermal conductivity and specific heat of a hybrid nanofluid obtained experimentally via ANFIS-based model and modern optimization. Journal of Molecular Liquids, 321(January), Elsevier B.V.: 114287. https://doi.org/10.1016/j.molliq.2020.114287
  • Sajawal, M., Ur Rehman, T., Ali, H. M., Sajjad, U., Raza, A., & Bhatti, M. S. (2019). Experimental thermal performance analysis of finned tube-phase change material based double pass solar Air heater. Case Studies in Thermal Engineering, 15(November), Elsevier: 100543. https://doi.org/10.1016/J.CSITE.2019.100543
  • Saravanakumar, P. T., Mayilsamy, K., & Boopathi Sabareesh, V. (2013). ANN modeling of forced convection solar Air heater. International Review on Modelling and Simulations, 6(6), Praise Worthy Prize S.r.l: 1955–1960. https://doi.org/10.1109/ICCTET.2013.6675911
  • Saravanakumar, P. T., Somasundaram, D., & Matheswaran, M. M. (2019). Thermal and thermo-hydraulic analysis of Arc shaped Rib roughened solar Air heater integrated with fins and baffles. Solar Energy, 180(March), Pergamon: 360–371. https://doi.org/10.1016/J.SOLENER.2019.01.036
  • Sarwar, J., Khan, M. R., Rehan, M., Asim, M., & Kazim, A. H. (2020). Performance analysis of a flat plate collector to achieve a fixed outlet temperature under semi-arid climatic conditions. Solar Energy, 207(September), Elsevier Ltd: 503–516. https://doi.org/10.1016/j.solener.2020.06.088
  • Self, S. J., Reddy, B. V., & Rosen, M. A. (2013). Geothermal heat pump systems: Status review and comparison with other heating options. Applied Energy, 101(January), Elsevier: 341–348. https://doi.org/10.1016/J.APENERGY.2012.01.048
  • Shetty, S. P., Nayak, S., Kumar, S., & Vasudeva Karanth, K. (2021). Thermo-Hydraulic performance prediction of a solar Air heater with circular perforated absorber plate using artificial neural network. Thermal Science and Engineering Progress, 23(June), Elsevier: 100886. https://doi.org/10.1016/J.TSEP.2021.100886
  • Shetty, S. P., Paineni, A., Kande, M., Madhwesh, N., Yagnesh Sharma, N., & Vasudeva Karanth, K. (2020). Experimental investigations on a cross flow solar Air heater having perforated circular absorber plate for thermal performance augmentation. Solar Energy, 197(February), Pergamon: 254–265. https://doi.org/10.1016/J.SOLENER.2020.01.005
  • Sivakandhan, C., Arjunan, T. V., & Matheswaran, M. M. (2020). Thermohydraulic performance enhancement of a New hybrid duct solar Air heater with inclined Rib roughness. Renewable Energy, 147(March), Pergamon: 2345–2357. https://doi.org/10.1016/J.RENENE.2019.10.007
  • Sivasubramanian, R., Kumaresan, G., Santhosh, N., Reshvanth, K. S., Syed Riyasudeen, S., & Shannon Medone, R. (2022). Performance analysis of multipass tubes solar water heater using nanofluids. Materials Today: Proceedings, 66(January), Elsevier: 1051–1055. https://doi.org/10.1016/J.MATPR.2022.04.838
  • Sohani, A., Hoseinzadeh, S., Samiezadeh, S., & Verhaert, I. (2022). Machine learning prediction approach for dynamic performance modeling of an enhanced solar still desalination system. Journal of Thermal Analysis and Calorimetry, 2021(April), Springer: 1–12. https://doi.org/10.1007/S10973-021-10744-Z
  • Soltani, M., Kashkooli, F. M., Dehghani-Sanij, A. R., Kazemi, A. R., Bordbar, N., Farshchi, M. J., Elmi, M., Gharali, K., & Dusseault, M. B. (2019). A comprehensive study of geothermal heating and cooling systems. Sustainable Cities and Society, 44(January), Elsevier: 793–818. https://doi.org/10.1016/J.SCS.2018.09.036
  • Souliotis, M., Kalogirou, S., & Tripanagnostopoulos, Y. (2009). Modelling of an ICS solar water heater using artificial neural networks and TRNSYS. Renewable Energy, 34(5), Pergamon: 1333–1339. https://doi.org/10.1016/J.RENENE.2008.09.007
  • Sridharan, M. (2020). Application of generalized regression neural network in predicting the performance of natural convection solar dryer. Journal of Solar Energy Engineering, Transactions of the ASME, 142(3). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/1.4045384/1066328.
  • SunilRaj, B. A., & Eswaramoorthy, M. (2023). Performance study on forced convection mode V-trough solar air heater with thermal storage: An experimental approach. Materials Today: Proceedings, September. Elsevier. 72, 1664–1672. https://doi.org/10.1016/J.MATPR.2022.09.450.
  • Thangavelu, S. K., Khoo, R. J., & Piraiarasi, C. (2021). Exergy and exergoeconomic analysis of domestic scale solar water heater by the effect of solar collector area. Materials Today: Proceedings, 47(January), Elsevier: 5004–5010. https://doi.org/10.1016/J.MATPR.2021.04.584
  • Torshizi, M. V., & Mighani, A. H. (2017). The application of solar energy in agricultural systems. Renewable Energy and Sustainable Development, 3(2), Arab Academy for Science, Technology, and Maritime Transport (AASTMT): 234–240. https://doi.org/10.21622/resd.2017.03.2.234
  • Tripathy, P. P., & Kumar, S. (2009). Neural network approach for food temperature prediction during solar drying. International Journal of Thermal Sciences, 48(7), Elsevier Masson: 1452–1459. https://doi.org/10.1016/J.IJTHERMALSCI.2008.11.014
  • Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105(May), Pergamon: 569–582. https://doi.org/10.1016/J.RENENE.2016.12.095
  • Wang, D., Liu, J., Liu, Y., Wang, Y., Li, B., & Liu, J. (2020). Evaluation of the performance of an improved solar air heater with “S” shaped ribs with gap. Solar Energy, 195(January), Pergamon: 89–101. https://doi.org/10.1016/J.SOLENER.2019.11.034
  • Wang, Y., Kandeal, A. W., Swidan, A., Sharshir, S. W., Abdelaziz, G. B., Halim, M. A., Kabeel, A. E., & Yang, N. (2021). Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm. Applied Thermal Engineering, 184(February), Pergamon: 116233. https://doi.org/10.1016/J.APPLTHERMALENG.2020.116233
  • Yadav, A. S., Gupta, S., Agrawal, A., Saxena, R., Agrawal, N., & Nashine, S. (2022). Performance enhancement of solar Air heater by attaching artificial Rib roughness on the absorber plate. Materials Today: Proceedings, 63(January), Elsevier: 706–717. https://doi.org/10.1016/J.MATPR.2022.05.064
  • Yaïci, W., & Entchev, E. (2014). Performance prediction of a solar thermal energy system using artificial neural networks. Applied Thermal Engineering, 73(1), Pergamon: 1348–1359. https://doi.org/10.1016/J.APPLTHERMALENG.2014.07.040