1,102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

1D-3D coupled simulation method of hydraulic transients in ultra-long hydraulic systems based on OpenFOAM

, , , , &
Article: 2229889 | Received 26 Apr 2023, Accepted 14 Jun 2023, Published online: 04 Jul 2023

References

  • Brunone, B., Karney, B. W., Mecarelli, M., & Ferrante, M. (2000). Velocity profiles and unsteady pipe friction in transient flow. Journal of Water Resources Planning and Management, 126(4), 236–244. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(236)
  • Cai, F., Cheng, Y., & Zhang, X. (2016). Approaches to guarantee accuracy of 3D CFD simulations of surge tank wave (in Chinese). Engineering Journal of Wuhan University, 49(3), 390–396. https://doi.org/10.14188/j.1671-8844.2016-03-012
  • Chaudhry, M. H. (2014). Applied hydraulic transients. New York: Springer.
  • Demirdžić, I., & Perić, M. (1990). Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. International Journal for Numerical Methods in Fluids, 10(7), 771–790. https://doi.org/10.1002/fld.1650100705
  • Erdbrink, C. D., Krzhizhanovskaya, V. V., & Sloot, P. M. A. (2014). Reducing cross-flow vibrations of underflow gates: Experiments and numerical studies. Journal of Fluids and Structures, 50, 25–48. https://doi.org/10.1016/j.jfluidstructs.2014.06.010
  • Fan, W., & Anglart, H. (2020). varRhoTurbVOF: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in OpenFOAM. Computer Physics Communications, 247, 106876. https://doi.org/10.1016/j.cpc.2019.106876
  • Fu, X., Li, D., Song, Y., Wang, H., Yang, J., & Wei, X. (2023). Dynamic characteristics of a running away pump-turbine with large head variation: 1D + 3D coupled simulation. Engineering Applications of Computational Fluid Mechanics, 17(1), 2188910. https://doi.org/10.1080/19942060.2023.2188910
  • Galindo, J., Tiseira, A., Fajardo, P., & Navarro, R. (2011). Coupling methodology of 1D finite difference and 3D finite volume CFD codes based on the Method of Characteristics. Mathematical and Computer Modelling, 54(7), 1738–1746. https://doi.org/10.1016/j.mcm.2010.11.078
  • Ghidaoui, M. S., Zhao, M., McInnis, D. A., & Axworthy, D. H. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews, 58(1), 49–76. https://doi.org/10.1115/1.1828050
  • He, J., Hou, Q., Lian, J., Tijsseling, A. S., Bozkus, Z., Laanearu, J., & Lin, L. (2022). Three-dimensional CFD analysis of liquid slug acceleration and impact in a voided pipeline with end orifice. Engineering Applications of Computational Fluid Mechanics, 16(1), 1444–1463. https://doi.org/10.1080/19942060.2022.2095440
  • Huang, W. D., Fan, H. G., & Chen, N. X. (2012). Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine. IOP Conference Series: Earth and Environmental Science, 15(5), 052003. https://doi.org/10.1088/1755-1315/15/5/052003
  • Jablonská, J. (2014). Compressibility of the fluid. EPJ Web of Conferences, 67, 02048. https://doi.org/10.1051/epjconf/20146702048
  • Jasak, H. (2009, January 5). Dynamic Mesh Handling in OpenFOAM. 47th aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. https://doi.org/10.2514/6.2009-341.
  • Li, D., Fu, X., Zuo, Z., Wang, H., Li, Z., Liu, S., & Wei, X. (2019). Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review. Renewable and Sustainable Energy Reviews, 101, 26–46. https://doi.org/10.1016/j.rser.2018.10.023
  • Li, X., Tang, X., Zhu, M., & Shi, X. (2019). 1D-3D coupling investigation of hydraulic transient for power-supply failure of centrifugal pump-pipe system. Journal of Hydroinformatics, 21(5), 708–726. https://doi.org/10.2166/hydro.2019.122
  • Liu, J., Wu, J., Zhang, Y., & Wu, X. (2021). Sensitivity analysis of hydraulic transient simulations based on the MOC in the gravity flow. Water, 13(23), 3464. https://doi.org/10.3390/w13233464
  • Lobovský, L., Botia-Vera, E., Castellana, F., Mas-Soler, J., & Souto-Iglesias, A. (2014). Experimental investigation of dynamic pressure loads during dam break. Journal of Fluids and Structures, 48, 407–434. https://doi.org/10.1016/j.jfluidstructs.2014.03.009
  • Ma, G., Lin, Z., & Zhu, Z. (2020). Investigation of transient gas-solid flow characteristics and particle erosion in a square gate valve. Engineering Failure Analysis, 118, 104827. https://doi.org/10.1016/j.engfailanal.2020.104827
  • Mandair, S., Morissette, J. F., Magnan, R., & Karney, B. (2021). MOC-CFD coupled model of load rejection in hydropower station. IOP Conference Series: Earth and Environmental Science, 774(1), 012021. https://doi.org/10.1088/1755-1315/774/1/012021
  • Nan, Z., Sheng, J., Congfang, A., & Weiye, D. (2018). An integrated water-conveyance system based on Web GIS. Journal of Hydroinformatics, 20(3), 668–686. https://doi.org/10.2166/hydro.2017.113
  • Piscaglia, F., Giussani, F., Montorfano, A., Hélie, J., & Aithal, S. M. (2019). A MultiPhase Dynamic-VoF solver to model primary jet atomization and cavitation inside high-pressure fuel injectors in OpenFOAM. Acta Astronautica, 158, 375–387. https://doi.org/10.1016/j.actaastro.2018.07.026
  • Qi, D., Bi, H., Zeng, H., Shen, Y., & Wang, Z. (2022). Research on sediment laden flow characteristics in water conveyance system. IOP Conference Series: Earth and Environmental Science, 1079(1), 012047. https://doi.org/10.1088/1755-1315/1079/1/012047
  • Ruprecht, A., & Helmrich, T. (2003). Simulation of the water hammer in a hydro power plant caused by draft tube surge. Volume 1: Fora, Parts A, B, C, and D, 2811–2816. https://doi.org/10.1115/FEDSM2003-45249
  • Shen, C., Wang, W., He, S., & Xu, Y. (2018). Numerical and experimental comparative study on the flow-induced vibration of a plane gate. Water, 10(11), Article 11. https://doi.org/10.3390/w10111551
  • Smok, S., Kizilaslan, M. A., Kürümüş, A., & Demirel, E. (2022). Experimental study of hydrodynamic pressures acting on a submerged gate. Teknik Dergi, 33(4), Article 4. https://doi.org/10.18400/tekderg.707668
  • Tang, X., Duan, X., Gao, H., Li, X., & Shi, X. (2020). Cfd investigations of transient cavitation flows in pipeline based on weakly-compressible model. Water, 12(2), 448. https://doi.org/10.3390/w12020448
  • Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Springer Science & Business Media.
  • Urbanowicz, K., Stosiak, M., Towarnicki, K., & Bergant, A. (2021). Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system. Engineering Failure Analysis, 128, 105607. https://doi.org/10.1016/j.engfailanal.2021.105607
  • Wang, C., Nilsson, H., Yang, J., & Petit, O. (2017). 1D–3D coupling for hydraulic system transient simulations. Computer Physics Communications, 210, 1–9. https://doi.org/10.1016/j.cpc.2016.09.007
  • Warda, H. A., Wahba, E. M., & El-Din, M. S. (2020). Computational Fluid Dynamics (CFD) simulation of liquid column separation in pipe transients. Alexandria Engineering Journal, 59(5), 3451–3462. https://doi.org/10.1016/j.aej.2020.05.025
  • Wu, D., Yang, S., Wu, P., & Wang, L. (2015). MOC-CFD coupled approach for the analysis of the fluid dynamic interaction between water hammer and pump. Journal of Hydraulic Engineering, 141(6), 06015003. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001008
  • Xia, L., Cheng, Y., & Zhou, D. (2013). 3-D simulation of transient flow patterns in a corridor-shaped air-cushion surge chamber based on computational fluid dynamics. Journal of Hydrodynamics, 25(2), 249–257. https://doi.org/10.1016/S1001-6058(13)60360-1
  • Yang, S., Wu, D., Lai, Z., & Du, T. (2017). Three-dimensional computational fluid dynamics simulation of valve-induced water hammer. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(12), 2263–2274. https://doi.org/10.1177/0954406216631780
  • Yang, Z., Cheng, Y., Xia, L., Meng, W., Liu, K., & Zhang, X. (2020). Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip. Renewable Energy, 152, 1149–1159. https://doi.org/10.1016/j.renene.2020.01.079
  • Ye, J., Du, Z., Xie, J., Yin, X., Peng, W., & Yan, Z. (2022). Transient flow performance and heat transfer characteristic in the cylinder of hydraulic driving piston hydrogen compressor during compression stroke. International Journal of Hydrogen Energy, 48, 7072–7084. https://doi.org/10.1016/j.ijhydene.2022.06.319
  • Zhang, X., & Cheng, Y. (2012). Simulation of hydraulic transients in hydropower systems using the 1-D-3-D coupling approach. Journal of Hydrodynamics, 24(4), 595–604. https://doi.org/10.1016/S1001-6058(11)60282-5
  • Zhang, Y., Duan, H., & Keramat, A. (2022). CFD-aided study on transient wave-blockage interaction in a pressurized fluid pipeline. Engineering Applications of Computational Fluid Mechanics, 16(1), 1957–1973. https://doi.org/10.1080/19942060.2022.2126999
  • Zhao, M., & Ghidaoui, M. S. (2004). Godunov-type solutions for water hammer flows. Journal of Hydraulic Engineering, 130(4), 341–348. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(341)
  • Zhu, M. L., Zhang, Y. H., & Wang, T. (2012). Discussion on operation mode of long distances gravity-Fed pressure diversion project. Advanced Materials Research, 433–440, 7125–7130. https://doi.org/10.4028/www.scientific.net/AMR.433-440.7125