910
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of the train heights on the aerodynamic behaviour of a high-speed train

, ORCID Icon, , , , & show all
Article: 2233614 | Received 21 Feb 2023, Accepted 17 Jun 2023, Published online: 13 Jul 2023

References

  • Aschwanden, P., Müller, J., Travaglio, G. C., & Schöning, T. (2009). The influence of motion aerodynamics on the simulation of vehicle dynamics. SAE International Journal of Passenger Cars - Mechanical Systems, 1(1), 545–551. https://doi.org/10.4271/2008-01-0657
  • Baker, C. J., Quinn, A., Sima, M., Hoefener, L., & Licciardello, R. (2014a). Full-scale measurement and analysis of train slipstreams and wakes. Part 1: Ensemble averages. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(5), 451–467. https://doi.org/10.1177/0954409713485944
  • Baker, C. J., Quinn, A., Sima, M., Hoefener, L., & Licciardello, R. (2014b). Full-scale measurement and analysis of train slipstreams and wakes. Part 2 gust analysis. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(5), 468–480. https://doi.org/10.1177/0954409713488098
  • Bell, J. R., Burton, D., Thompson, M. C., Herbst, A. H., & Sheridan, J. (2015). Moving model analysis of the slipstream and wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 136, 127–137. https://doi.org/10.1016/j.jweia.2014.09.007
  • Bell, J. R., Burton, D., Thompson, M. C., Herbst, A. H., & Sheridan, J. (2017). The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains. Experimental Thermal and Fluid Science, 83, 215–230. https://doi.org/10.1016/j.expthermflusci.2017.01.014
  • Bouferrouk, A. (2013). Methods of calculating aerodynamic force on a vehicle subject to turbulent crosswinds. American Journal of Fluid Dynamics, 3(34), 119–134. https://doi.org/10.5923/j.ajfd.20130304.04
  • CEN European Standard. (2013). Railway applications–aerodynamics-Part4: requirements and test procedures for aerodynamics on open track. TSI/EN 14067-4.
  • Cheng, F., Xiong, X. H., Tang, M. Z., Li, X. B., & Wang, X. R. (2022). Impact of the gap distance between two adjacent external windshields of a high-speed train on surrounding flow characteristics: An IDDES study. Engineering Applications of Computational Fluid Mechanics, 16(1), 724–745. https://doi.org/10.1080/19942060.2022.2046168
  • Dong, T., Minelli, G., Wang, J., Liang, X., & Krajnović, S. (2020). The effect of ground clearance on the aerodynamics of a generic high-speed train. Journal of Fluids and Structures, 95, 102990. https://doi.org/10.1016/j.jfluidstructs.2020.102990
  • Dong, X., Li, Y., Cai, T., Zhou, W., Cai, X., & Dong, Y. (2023). Quantitative experimental research on vortex generation and self-maintenance mechanisms in turbulence. Physics of Fluids, 35(05), 055118. https://doi.org/10.1063/5.0142624
  • Ehirim, O. H., Knowles, K., & Saddington, A. J. (2019). A review of ground-effect diffuser aerodynamics. Journal of Fluids Engineering, 141(2), 1–19. https://doi.org/10.1115/1.4040501
  • François, D. G., Delnero, J. S., Colman, J., Marañón Di Leo, J., & Camocardi, M. E. (2009). Experimental determination of stationary aerodynamics loads on a double deck bus. 11th Americas Conference on Wind Engineering.
  • Guo, Z., Liu, T., Hemida, H., Chen, Z., & Liu, H. (2020). Numerical simulation of the aerodynamic characteristics of double unit train. Engineering Applications of Computational Fluid Mechanics, 14(1), 910–922. https://doi.org/10.1080/19942060.2020.1784798
  • Hemida, H., Gil, N., & Baker, C. (2010). LES of the slipstream of a rotating train. Journal of Fluids Engineering, 132(5), 0511031. https://doi.org/10.1115/1.4001447
  • Krajnović, S., & Davidson, L. (2005). Flow around a simplified car, part 2: Understanding the flow. Journal of Fluids Engineering, 127(5), 919–928. https://doi.org/10.1115/1.1989372
  • Li, X. B., Chen, G., Liang, X. F., Liu, D. R., & Xiong, X. H. (2021). Research on spectral estimation parameters for application of spectral proper orthogonal decomposition in train wake flows. Physics of Fluids, 33(12), 125103. https://doi.org/10.1063/5.0070092
  • Liu, H., Zhang, S., Liang, X., & Zou, Y. (2022). The effect of covering structure in pantograph sinking platform on the aerodynamics of high- speed train. Engineering Applications of Computational Fluid Mechanics, 16(1), 2157–2175. https://doi.org/10.1080/19942060.2022.2133517
  • Masson, E., Paradot, N., & Allain, E. (2012). Notes on numerical fluid mechanics and multidisciplinary design. Noise and Vibration Mitigation for Rail Transportation Systems, 118(5), 437–444. https://doi.org/10.1007/978-4-431-53927-8_52
  • Mohrfeld-Halterman, J. A., & Uddin, M. (2016). Quasi steady-state aerodynamic model development for race vehicle simulations. Vehicle System Dynamics, 54(1), 124–136. https://doi.org/10.1080/00423114.2015.1131840
  • Muld, T. W., Efraimsson, G., & Henningson, D. S. (2014). Wake characteristics of high-speed trains with different lengths. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(4), 333–342. https://doi.org/10.1177/0954409712473922
  • Niu, J., Wang, Y., Zhang, L., & Yuan, Y. (2018). Numerical analysis of aerodynamic characteristics of high-speed train with different train nose lengths. International Journal of Heat and Mass Transfer, 127, 188–199. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.041
  • Paradot, N., & Bouchet, J. P. (2009). Determination of aerodynamic coefficients of the TGV Duplex in wind tunnel for flat ground configurations. EuroMech colloquium 509, Vehicle Aerodynamics, Berlin, Germany.
  • Raghunathan, R. S., Kim, H. D., & Setoguchi, T. (2002). Aerodynamics of high-speed railway train. Progress in Aerospace Sciences, 38(6), 469–514. https://doi.org/10.1016/S0376-0421(02)00029-5
  • Siddiqui, N. A., & Agelin-Chaab, M. (2022). Experimental investigation of the flow features around an elliptical Ahmed body. Physics of Fluids, 34(10), 105119. https://doi.org/10.1063/5.0114377
  • Tan, C., Zhou, D., Chen, G., Sheridan, J., & Krajnovic, S. (2020). Influences of marshalling length on the flow structure of a maglev train. International Journal of Heat and Fluid Flow, 85(6), 108604. https://doi.org/10.1016/j.ijheatfluidflow.2020.108604
  • Tian, H. (2019). Review of research on high-speed railway aerodynamics in China. Transportation Safety and Environment, 1(1), 1–21. https://doi.org/10.1093/tse/tdz014
  • Wang, F., Weng, M., Xiong, K., Han, J., Obadi, I., & Liu, F. (2022). Study on aerodynamic pressures caused by double-train tracking operation in a metro tunnel. Tunnelling and Underground Space Technology, 123(11), 104434. https://doi.org/10.1016/j.tust.2022.104434
  • Wang, J., Gao, G., Li, X., Liang, X., & Zhang, J. (2020). Effect of bogie fairings on the flow behaviours and aerodynamic performance of a high-speed train. Vehicle System Dynamics, 58(6), 890–910. https://doi.org/10.1080/00423114.2019.1607400
  • Wang, S., Burton, D., Herbst, A., Sheridan, J., & Thompson, M. C. (2018). The effect of bogies on high-speed train slipstream and wake. Journal of Fluids and Structures, 83, 471–489. https://doi.org/10.1016/j.jfluidstructs.2018.03.013
  • Wang, S., Burton, D., Herbst, A. H., Sheridan, J., & Thompson, M. C. (2020). The impact of rails on high-speed train slipstream and wake. Journal of Wind Engineering and Industrial Aerodynamics, 198(2), 104114. https://doi.org/10.1016/j.jweia.2020.104114
  • Xia, C., Wang, H., Shan, X., Yang, Z., & Li, Q. (2017). Effects of ground configurations on the slipstream and near wake of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 168(6), 177–189. https://doi.org/10.1016/j.jweia.2017.06.005
  • Xia, Y., Liu, T., Gu, H., Guo, Z., Chen, Z., Li, W., & Li, L. (2020). Aerodynamic effects of the gap spacing between adjacent vehicles on wind tunnel train models. Engineering Applications of Computational Fluid Mechanics, 14(1), 835–852. https://doi.org/10.1080/19942060.2020.1773319
  • Zou, S., He, X., Hu, L., Wang, H., & Kareem, A. (2022). Characteristics of the velocity field in slipstream induced by a CR 400 high-speed train lead-carriage. Measurement, 196(4), 111205. https://doi.org/10.1016/j.measurement.2022.111205