824
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the influence of bucket’s flow patterns on energy conversion characteristics of Pelton turbine

, , , , &
Article: 2234435 | Received 01 May 2023, Accepted 04 Jul 2023, Published online: 21 Jul 2023

References

  • ANSYS Inc. (2021b). ANSYS CFX-solver theory guide. ANSYS Inc.
  • Avellan, F., Dupont, P., Kvicinisky, S., Chapuis, L., Parkinson, E., & Vullioud, G. (1998). Flow calculations in Pelton turbines - part 2: Free surface flows. 19th IAHR symposium on hydraulic machinery and cavitation, Singapore.
  • Benzon, D., Židonis, A., Panagiotopoulos, A., Aggidis, G. A., Anagnostopoulos, J. S., & Papantonis, D. E. (2015). Impulse turbine injector design improvement using computational fluid dynamics. Journal of Fluids Engineering, 137(4), 041106. https://doi.org/10.1115/1.4029310
  • Bhattarai, S., Vichare, P., Dahal, K., Makky, A. A., & Olabi, A. G. (2019). Novel trends in modelling techniques of Pelton turbine bucket for increased renewable energy production. Renewable and Sustainable Energy Reviews, 112, 87–101. https://doi.org/10.1016/j.rser.2019.05.045
  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130, 078001–7. https://doi.org/10.1115/1.2960953
  • Chen, S. T., Zhao, W. W., & Wan, D. C. (2022). Turbulent structures and characteristics of flows past a vertical surface-piercing finite circular cylinder. Physics of Fluids, 34(1), 015115. https://doi.org/10.1063/5.0078526
  • Chitrakar, S., Solemslie, B. W., Neopane, H. P., & Dahlhaug, O. G. (2020). Review on numerical techniques applied in impulse hydro turbines. Renewable Energy, 159, 843–859. https://doi.org/10.1016/j.renene.2020.06.058
  • Ge, X. F., Sun, J., Zhou, Y., Cai, J. G., Zhang, H., Zhang, L., Ding, M. Q., Deng, C. Z., Binama, M., & Zheng, Y. (2021). Experimental and numerical studies on opening and velocity influence on sediment erosion of Pelton turbine buckets. Renewable Energy, 173, 1040–1056. https://doi.org/10.1016/j.renene.2021.04.072
  • Guo, B., Xiao, Y. X., Rai, A. K., Zhang, J., & Liang, Q. W. (2020). Sediment-laden flow and erosion modeling in a Pelton turbine injector. Renewable Energy, 162, 30–42. https://doi.org/10.1016/j.renene.2020.08.032
  • Hahn, F. J. J., Maly, A., Semlitsch, B., & Bauer, C. (2023). Numerical investigation of Pelton turbine distributor systems with axial inflow. Energies, 16(6), 2737. https://doi.org/10.3390/en16062737
  • Hahn, F. J. J., Semlitsch, B., & Bauer, C. (2022). On the numerical assessment of flow losses and secondary flows in Pelton turbine manifolds. IOP conference series: Earth and environmental science, IOP publishing, 1079(1): 012082.
  • Janßen, C., & Krafczyk, M. (2011). Free surface flow simulations on GPGPUs using the LBM. Computers & Mathematics with Applications, 61(12), 3549–3356. https://doi.org/10.1016/j.camwa.2011.03.016
  • Kan, K., Zhang, Q. Y., Xu, Z., Zheng, Y., Gao, Q., & Shen, L. (2022). Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions. Energy, 255, 124532. https://doi.org/10.1016/j.energy.2022.124532
  • Kubota, T. (1989). Observation of jet interference in 6-nozzle Pelton turbine. Journal of Hydraulic Research, 27(6), 753–767. https://doi.org/10.1080/00221688909499107
  • Kumar, P., & Saini, R. P. (2010). Study of cavitation in hydro turbines—a review. Renewable and Sustainable Energy Reviews, 14(1), 374–383. https://doi.org/10.1016/j.rser.2009.07.024
  • Liu, C. Q., Gao, Y. S., Tian, S. L., & Dong, X. R. (2018). Effects of planar shear on the three-dimensional instability in flow past a circular cylinder. Physics of Fluids, 30(3), 034103. https://doi.org/10.1063/1.5018844
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Messa, G. V., Mandelli, S., & Malavasi, S. (2019). Hydro-abrasive erosion in Pelton turbine injectors: A numerical study. Renewable Energy, 130, 474–488. https://doi.org/10.1016/j.renene.2018.06.064
  • Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: A review. Energy Storage and Saving, 1(3), 166–216. https://doi.org/10.1016/j.enss.2022.07.002
  • Nigussie, T., Engeda, A., & Dribssa, E. (2017). Design, modeling, and CFD analysis of a micro hydro Pelton turbine runner: For the case of selected site in Ethiopia. International Journal of Rotating Machinery, 2017, 1. https://doi.org/10.1155/2017/3030217
  • Panagiotopoulos, A., Židonis, A., Aggidis, G. A., Anagnostopoulos, J. S., & Papantonis, D. E. (2015). Flow modeling in Pelton turbines by an accurate Eulerian and a fast lagrangian evaluation method. International Journal of Rotating Machinery, 2015, 1. https://doi.org/10.1155/2015/679576
  • Perrig, A., Avellan, F., Kueny, J., Farhat, M., & Parkinson, E. (2006). Flow in a Pelton turbine bucket: Numerical and experimental investigations. Journal of Fluids Engineering, 128(2), 350–358. https://doi.org/10.1115/1.2170120
  • Petley, S. M. (2018). Numerical and experimental investigation of flow in horizontal axis Pelton turbine [Doctoral dissertation]. Lancaster University.
  • Qu, W. J., Gao, Y., He, S., Zhang, J., Peng, K. W., Wu, H. F., Wang, R. L., & Hong, H. (2023). Further study on carbon fixation using green power for a solar-assisted multi-generation system with carbon capture. Energy Conversion and Management, 276, 116574. https://doi.org/10.1016/j.enconman.2022.116574
  • Quaranta, E., Bonjean, M., Cuvato, D., Nicolet, C., Dreyer, M., Gaspoz, A., & Tomaselli, G. (2020). Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems. Sustainability, 12(21), 8873–8888. https://doi.org/10.3390/su12218873
  • Quaranta, E., & Trivedi, C. (2021). The state-of-art of design and research for pelton turbine casing, weight estimation, counterpressure operation and scientific challenges. Heliyon, 7(12), e08527. https://doi.org/10.1016/j.heliyon.2021.e08527
  • Rejeb, O., Alirahmi, S. M., Assareh, E., Assad, M., Jemni, A., Bettayeb, M., & Ghenai, C. (2022). Innovative integrated solar powered polygeneration system for green hydrogen, oxygen, electricity, and heat production. Energy Conversion and Management, 269, 116073. https://doi.org/10.1016/j.enconman.2022.116073
  • Sengpanich, K., Bohez, E. L. J., Thongkruer, P., & Sakulphan, K. (2019). New mode to operate centrifugal pump as impulse turbine. Renewable Energy, 140, 983–993. https://doi.org/10.1016/j.renene.2019.03.116
  • Shadab, M., Karimipour, M., Najafi, A. F., Paydar, R., & Nourbakhsh, S. A. (2022). Effect of impeller shroud trimming on the hydraulic performance of centrifugal pumps with low and medium specific speeds. Engineering Applications of Computational Fluid Mechanics, 16(1), 514–535. https://doi.org/10.1080/19942060.2021.2016492
  • Stamatelos, F. G., Anagnostopoulos, J. S., & Papantonis, D. E. (2011). Performance measurements on a Pelton turbine model. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(3), 351–362. https://doi.org/10.1177/2041296710394260
  • Sun, L. G., Li, Y. Y., Guo, P. C., & Xu, Z. F. (2023). Numerical investigation of air admission influence on the precessing vortex rope in a Francis turbine. Engineering Applications of Computational Fluid Mechanics, 17, 1. https://doi.org/10.1080/19942060.2022.2164619
  • Vessaz, C., Andolfatto, L., Avellan, F., & Tournier, C. (2017). Toward design optimization of a pelton turbine runner. Structural and Multidisciplinary Optimization, 55(1), 37–51. https://doi.org/10.1007/s00158-016-1465-7
  • Wang, C. Y., Wang, F. J., Chen, W. H., He, Q. R., Chen, X., & Zhang, Z. C. (2022). A dynamic particle scale-driven interphase force model for water-sand two-phase flow in hydraulic machinery and systems. International Journal of Heat and Fluid Flow, 95, 108974. https://doi.org/10.1016/j.ijheatfluidflow.2022.108974
  • Xiao, Y. X. (2006). Numerical analysis method of unsteady interference for jet and for water sheet [Doctoral dissertation]. South China University of Technology.
  • Xiao, Y. X., Wang, Z. W., Zhang, J., Zeng, C. J., & Yan, Z. G. (2014). Numerical and experimental analysis of the hydraulic performance of a prototype pelton turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 228(1), 46–55. https://doi.org/10.1177/0957650913506711
  • Zeng, C. J. (2018). Research on the Internal flow characteristic and flow interference in the Pelton turbine [Doctoral dissertation]. Tsinghua University.
  • Zeng, C. J., Xiao, Y. X., Wang, Z. W., Zhang, J., & Luo, Y. Y. (2017). Numerical analysis of a Pelton bucket free surface sheet flow and dynamic performance affected by operating head. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 231(3), 182–196. https://doi.org/10.1177/0957650916689507
  • Zhang, Z. H. (2007). Flow interactions in Pelton turbines and the hydraulic efficiency of the turbine system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(3), 343–355. https://doi.org/10.1243/09576509JPE294
  • Zhao, H. R., Wang, F. J., Wang, C. Y., Chen, W. H., Yao, Z. F., Shi, X. Y., Li, X. Q., & Zhong, Q. (2021). Study on the characteristics of horn-like vortices in an axial flow pump impeller under off-design conditions. Engineering Applications of Computational Fluid Mechanics, 15(1), 1613–1628. https://doi.org/10.1080/19942060.2021.1985615
  • Zhao, H. R., Wang, F. J., Wang, C. Y., & Wang, B. H. (2022). Investigation on the hump region generation mechanism of pump mode in low-head pumped hydro-storage unit. Physics of Fluids, 34(11), 115148. https://doi.org/10.1063/5.0130836
  • Židonis, A. (2015). Optimisation and efficiency improvement of Pelton hydro turbine using computational fluid dynamics and experimental testing [Doctoral dissertation]. Lancaster University.
  • Židonis, A., & Aggidis, G. A. (2016). Pelton turbine: Identifying the optimum number of buckets using CFD. Journal of Hydrodynamics, 28(1), 75–83. https://doi.org/10.1016/S1001-6058(16)60609-1