1,105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of nano-microparticle size and shape on wall-interaction: a human case study on an abdominal aortic aneurysm

, , , &
Article: 2236166 | Received 09 May 2023, Accepted 09 Jul 2023, Published online: 18 Jul 2023

References

  • Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., & Mofrad, M. R. K. (2021). Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields. Engineering Applications of Computational Fluid Mechanics, 15(1), 1703–1725. https://doi.org/10.1080/19942060.2021.1989042
  • Arzani, A., & Shadden, S. C. (2012). Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Physics of Fluids, 24(8). https://doi.org/10.1063/1.4744984
  • Awad, A. M., Mekheimer, K. S., Elkilany, S. A., & Zaher, A. Z. (2022). Leveraging elasticity of blood stenosis to detect the role of a non-Newtonian flow midst an arterial tube: Mazumdar and Keller models. Chinese Journal of Physics, 77. https://doi.org/10.1016/j.cjph.2022.04.006
  • Biglari, H., Razaghi, R., Ebrahimi, S., & Karimi, A. (2019). A computational dynamic finite element simulation of the thoracic vertebrae under blunt loading: Spinal cord injury. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(2), 84. https://doi.org/10.1007/s40430-019-1588-z
  • Burmasheva, N., & Prosviryakov, E. (2022). Exact solutions to Navier–Stokes equations describing a gradient nonuniform unidirectional vertical vortex fluid flow. Dynamics, 2(2). https://doi.org/10.3390/dynamics2020009
  • Climent, N., Arroyo, M., Osullivan, C., & Gens, A. (2014). Sand production simulation coupling DEM with CFD. European Journal of Environmental and Civil Engineering, 18(9). https://doi.org/10.1080/19648189.2014.920280
  • Cooley, M., Sarode, A., Hoore, M., Fedosov, D. A., Mitragotri, S., & Sen Gupta, A. (2018). Influence of particle size and shape on their margination and wall-adhesion: Implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 10(32). https://doi.org/10.1039/c8nr04042g
  • Dai, X., Zheng, G., Cheng, X., & Huo, H. (2019). Numerical simulation of ground movement induced by leakage of groundwater and sand in excavations based on the DEM-CFD method. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 38(2). https://doi.org/10.13722/j.cnki.jrme.2018.0933
  • Dufresne, M., Vazquez, J., Terfous, A., Ghenaim, A., & Poulet, J. B. (2009). Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computers and Fluids, 38(5). https://doi.org/10.1016/j.compfluid.2008.01.011
  • Ebrahimi, S., Shamloo, A., Alishiri, M., Mozhdehbakhsh Mofrad, Y., & Akherati, F. (2021). Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion. International Journal of Pharmaceutics, 609, Article 121133. https://doi.org/10.1016/j.ijpharm.2021.121133
  • Ebrahimi, S., Vatani, P., Amani, A., & Shamloo, A. (2021). Drug delivery performance of nanocarriers based on adhesion and interaction for abdominal aortic aneurysm treatment. International Journal of Pharmaceutics, 594. https://doi.org/10.1016/j.ijpharm.2020.120153
  • El Shamy, U., & Aydin, F. (2008). Multiscale modeling of flood-induced piping in river levees. Journal of Geotechnical and Geoenvironmental Engineering, 134(9). https://doi.org/10.1061/(asce)1090-0241(2008)134:9(1385)
  • El Shamy, U., & Zeghal, M. (2007). A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils. Soil Dynamics and Earthquake Engineering, 27(8), 712–729. https://doi.org/10.1016/j.soildyn.2006.12.010
  • Forouzandehmehr, M., & Shamloo, A. (2018). Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design. Biomechanics and Modeling in Mechanobiology, 17(1), 205–221. https://doi.org/10.1007/s10237-017-0955-x
  • Ghalambaz, M., Saleem, A., Nadeem, S., & Akhtar, S. (2021). Microphysical analysis for peristaltic flow of SWCNT and MWCNT carbon nanotubes inside a catheterised artery having thrombus: Irreversibility effects with entropy. International Journal of Exergy, 34(3). https://doi.org/10.1504/ijex.2021.10036473
  • Ghodousi, M., Shahgholi, M., & Payganeh, G. (2018). Analysis of nonlinear vibrations and stability of rotating asymmetrical nano-shafts incorporating surface energy effects. Continuum Mechanics and Thermodynamics, 30(4). https://doi.org/10.1007/s00161-018-0640-z
  • He, H., Wang, J., Li, Q., Li, X., Li, M., Wang, T., Li, J., Wang, L., & Shu, C. (2022). Endovascular repair combined with adjunctive procedures in the treatment of tuberculous infected native aortic aneurysms. Journal of Vascular Surgery, 76(2). https://doi.org/10.1016/j.jvs.2022.01.136
  • Hinde, E., Thammasiraphop, K., Duong, H. T. T., Yeow, J., Karagoz, B., Boyer, C., Gooding, J. J., & Gaus, K. (2017). Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 12(1). https://doi.org/10.1038/nnano.2016.160
  • Huang, K., Wu, Y., Zhang, Y., Youn, J. Y., & Cai, H. (2022). Combination of folic acid with nifedipine is completely effective in attenuating aortic aneurysm formation as a novel oral medication. Redox Biology, 58. https://doi.org/10.1016/j.redox.2022.102521
  • Huynh, A. T., & Miller, K. (2022). Towards accurate measurement of abdominal aortic aneurysm wall thickness from CT and MRI. In P. M. Nielsen, M. P. Nash, X. Li, K. Miller, & A. Wittek (Eds.), Computational biomechanics for medicine. Springer. https://doi.org/10.1007/978-3-031-09327-2_1
  • Kalitzin, G., Medic, G., Iaccarino, G., & Durbin, P. (2005). Near-wall behavior of RANS turbulence models and implications for wall functions. Journal of Computational Physics, 204(1). https://doi.org/10.1016/j.jcp.2004.10.018
  • Kang, T., Mukherjee, D., & Ryu, J. (2021). Numerical investigation of carotid stenosis in three-dimensional aortic-cerebral vasculature: Pulsatility index, resistive index, time to peak velocity, and flow characteristics. Engineering Applications of Computational Fluid Mechanics, 15(1). https://doi.org/10.1080/19942060.2021.1984993
  • Khanafer, K. M., Bull, J. L., Upchurch, G. R., & Berguer, R. (2007). Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Annals of Vascular Surgery, 21(1). https://doi.org/10.1016/j.avsg.2006.10.009
  • Kwon, O. (2008). Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty. Journal of Biomechanical Engineering. https://doi.org/10.1115/1.2838029
  • Lan, L., Liu, H., Ip, V., Soo, Y., Abrigo, J., Fan, F., Ma, S. H., Ma, K., Ip, B., Liu, J., Fan, Y., Zeng, J., Mok, V., Wong, L., Liebeskind, D., Leung, T., & Leng, X. (2020). Regional high wall shear stress associated with stenosis regression in symptomatic intracranial atherosclerotic disease. Stroke, 51(10), 3064–3073. https://doi.org/10.1161/STROKEAHA.120.030615
  • Lee, C., Duong, W., Kabutey, N.-K., Farzaneh, C., Tohmasi, S., Fujitani, R., Chau, A. H., & Kuo, I. (2023). Endovascular inframesenteric aortic aneurysm repair in cross fused renal ectopia. Annals of Vascular Surgery – Brief Reports and Innovations, 3(1). https://doi.org/10.1016/j.avsurg.2022.100151
  • Les, A. S., Shadden, S. C., Figueroa, C. A., Park, J. M., Tedesco, M. M., Herfkens, R. J., Dalman, R. L., & Taylor, C. A. (2010). Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Annals of Biomedical Engineering, 38(4). https://doi.org/10.1007/s10439-010-9949-x
  • Li, R., Liu, Y., & Jiang, J. (2023). Research advances in drug therapy for abdominal aortic aneurysms over the past five years: An updated narrative review. International Journal of Cardiology, 372. https://doi.org/10.1016/j.ijcard.2022.11.058
  • Lovato, S., Keetels, G. H., Toxopeus, S. L., & Settels, J. W. (2022). An eddy-viscosity model for turbulent flows of Herschel–Bulkley fluids. Journal of Non-Newtonian Fluid Mechanics, 301. https://doi.org/10.1016/j.jnnfm.2021.104729
  • Ma, D., Wang, Y., Azhar, M., Adler, A., Steinmetz, M., & Uecker, M. (2022). In silico modeling for personalized stenting in aortic coarctation. Engineering Applications of Computational Fluid Mechanics, 16(1), 2056–2073. https://doi.org/10.1080/19942060.2022.2127912
  • Manchester, E. L., Pirola, S., Salmasi, M. Y., O’Regan, D. P., Athanasiou, T., & Xu, X. Y. (2022). Evaluation of computational methodologies for accurate prediction of wall shear stress and turbulence parameters in a patient-specific aorta. Frontiers in Bioengineering and Biotechnology, 10, Article 836611. https://doi.org/10.3389/fbioe.2022.836611
  • Mao, H., Wang, X., Wang, Z., & Wu, H. (2018). Seepage of saturated coarse soil multi-scale coupling simulation with dynamic water level. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 37. https://doi.org/10.13722/j.cnki.jrme.2016.1529
  • Moawad, A. M. A., Abdel-Wahab, A. M., Mekheimer, K. S., Ali, K. K., & Sweed, N. S. (2022). Effects of electro-osmotic and double diffusion on nano-blood flow through stenosis and aneurysm of the subclavian artery: Numerical simulation. Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2022.2100945
  • Mohammadian, M., & Pourmehran, O. (2019). CFPD simulation of magnetic drug delivery to a human lung using an SAW nebulizer. Biomechanics and Modeling in Mechanobiology, 18(3). https://doi.org/10.1007/s10237-018-1101-0
  • Pedram, M. Z., Shamloo, A., Alasty, A., & Ghafar-Zadeh, E. (2016). Optimal magnetic field for crossing super-para-magnetic nanoparticles through the brain blood barrier: A computational approach. Biosensors, 6(2), 25. https://doi.org/10.3390/bios6020025
  • Rashidi, S., Esfahani, J. A., & Ellahi, R. (2017). Convective heat transfer and particle motion in an obstructed duct with two side by side obstacles by means of DPM model. Applied Sciences, 7(4). https://doi.org/10.3390/app7040431
  • Ruysschaert, N. (2009). (Self) hypnosis in the prevention of burnout and compassion fatigue for caregivers: Theory and induction. Contemporary Hypnosis, 26(3). https://doi.org/10.1002/ch.382
  • Saleem, A., Akhtar, S., Alharbi, F. M., Nadeem, S., Ghalambaz, M., & Issakhov, A. (2020). Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results in Physics, 19. https://doi.org/10.1016/j.rinp.2020.103431
  • Saleem, A., Akhtar, S., Nadeem, S., Issakhov, A., & Ghalambaz, M. (2020). Blood flow through a catheterized artery having a mild stenosis at the wall with a blood clot at the centre. CMES – Computer Modeling in Engineering and Sciences, 125(2). https://doi.org/10.32604/cmes.2020.011883
  • Sankar, D. S., & Hemalatha, K. (2007). A non-Newtonian fluid flow model for blood flow through a catheterized artery-steady flow. Applied Mathematical Modelling, 31(9). https://doi.org/10.1016/j.apm.2006.06.009
  • Shachar-Berman, L., Bhardwaj, S., Ostrovski, Y., Das, P., Koullapis, P., Kassinos, S., & Sznitman, J. (2020). In silico optimization of fiber-shaped aerosols in inhalation therapy for augmented targeting and deposition across the respiratory tract. Pharmaceutics, 12(3). https://doi.org/10.3390/pharmaceutics12030230
  • Shachar-Berman, L., Ostrovski, Y., Koshiyama, K., Wada, S., Kassinos, S. C., & Sznitman, J. (2019). Targeting inhaled fibers to the pulmonary acinus: Opportunities for augmented delivery from in silico simulations. European Journal of Pharmaceutical Sciences, 137. https://doi.org/10.1016/j.ejps.2019.105003
  • Shamloo, A., Amani, A., Forouzandehmehr, M., & Ghoytasi, I. (2019). In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2018.12.088
  • Shamloo, A., Boroumand, A., Ebrahimi, S., Kalantarnia, F., Maleki, S., & Moradi, H. (2022). Modeling of an ultrasound system in targeted drug delivery to abdominal aortic aneurysm: A patient-specific in silico study based on ligand-receptor binding. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(3). https://doi.org/10.1109/TUFFC.2021.3138868
  • Shamloo, A., Ebrahimi, S., Amani, A., & Fallah, F. (2020). Targeted drug delivery of microbubble to arrest abdominal aortic aneurysm development: A simulation study towards optimized microbubble design. Scientific Reports. https://doi.org/10.1038/s41598-020-62410-3
  • Shamloo, A., Ebrahimi, S., Ghorbani, G., & Alishiri, M. (2022). Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: An in silico study. Biomechanics and Modeling in Mechanobiology, 21(2). https://doi.org/10.1007/s10237-022-01559-4
  • Shamloo, A., Manuchehrfar, F., & Rafii-Tabar, H. (2015). A viscoelastic model for axonal microtubule rupture. Journal of Biomechanics, 48(7), 1241–1247. https://doi.org/10.1016/j.jbiomech.2015.03.007
  • Shamloo, A., Mohammadaliha, N., & Mohseni, M. (2015). Integrative utilization of microenvironments, biomaterials and computational techniques for advanced tissue engineering. Journal of Biotechnology, 212, 71–89. https://doi.org/10.1016/j.jbiotec.2015.08.005
  • Shamloo, A., Nejad, M. A., & Saeedi, M. (2017). Fluid–structure interaction simulation of a cerebral aneurysm: Effects of endovascular coiling treatment and aneurysm wall thickening. Journal of the Mechanical Behavior of Biomedical Materials, 74, 72–83. https://doi.org/10.1016/j.jmbbm.2017.05.020
  • Sun, H. T., Sze, K. Y., Chow, K. W., & On Tsang, A. C. (2022). A comparative study on computational fluid dynamic, fluid-structure interaction and static structural analyses of cerebral aneurysm. Engineering Applications of Computational Fluid Mechanics, 16(1), 262–278. https://doi.org/10.1080/19942060.2021.2013322
  • Tang, Z., Yu, L., Wang, F., Li, N., Chang, L., & Cui, N. (2018). Effect of particle size and shape on separation in a hydrocyclone. Water, 11(1). https://doi.org/10.3390/w11010016
  • Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 77(1). https://doi.org/10.1016/0032-5910(93)85010-7
  • Vali, A., Aristova, M., Vakil, P., Abdalla, R., Prabhakaran, S., Markl, M., Ansari, S. A., & Schnell, S. (2019). Semi-automated analysis of 4D flow MRI to assess the hemodynamic impact of intracranial atherosclerotic disease. Magnetic Resonance in Medicine, 82(2). https://doi.org/10.1002/mrm.27747
  • Vosswinkel, N., Kouyi, G. L., Ebbert, S., Schnieders, A., Maus, C., Laily, A. G., Mohn, R., & Uhl, M. (2012). Influence of transient behaviour on the settling of solids in storm water tanks. In Proceedings of the 9th Urban Drainage Modelling International Conference (pp. 3–7).
  • Wang, J., Tian, X., Yan, C., Wu, H., Bu, Y., Li, J., Liu, D., & Han, Y. (2023). TCF7L1 accelerates smooth muscle cell phenotypic switching and aggravates abdominal aortic aneurysms. JACC: Basic to Translational Science, 8(2). https://doi.org/10.1016/j.jacbts.2022.07.012
  • Wilcox, D. C. (2008). Formulation of the k-w turbulence model revisited. AIAA Journal, 46(11), 2823–2838. https://doi.org/10.2514/1.36541
  • Yan, H., Vosswinkel, N., Ebbert, S., Lipeme Kouyi, G., Mohn, R., Uhl, M., & Bertrand-Krajewski, J. L. (2020). Numerical investigation of particles’ transport, deposition and resuspension under unsteady conditions in constructed stormwater ponds. Environmental Sciences Europe, 32(1). https://doi.org/10.1186/s12302-020-00349-y
  • Yin, C., Rosendahl, L., Knudsen Kær, S., & Sørensen, H. (2003). Modelling the motion of cylindrical particles in a nonuniform flow. Chemical Engineering Science, 58(15). https://doi.org/10.1016/S0009-2509(03)00214-8
  • Yousefsani, S. A., Shamloo, A., & Farahmand, F. (2018). Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique. Journal of the Mechanical Behaviour of Biomedical Materials, 80, 194–202. https://doi.org/10.1016/j.jmbbm.2018.02.002
  • Zastawny, M., Mallouppas, G., Zhao, F., & van Wachem, B. (2012). Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. International Journal of Multiphase Flow, 39. https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.004
  • Zhan, J., Lu, T., Yang, Z., Hu, W., & Su, W. (2022). Influence of the flow field and vortex structure of patient-specific abdominal aortic aneurysm with intraluminal thrombus on the arterial wall. Engineering Applications of Computational Fluid Mechanics, 16(1), 2100–2122. https://doi.org/10.1080/19942060.2022.2131628
  • Zhao, J., & Shan, T. (2013). Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics. Powder Technology, 239. https://doi.org/10.1016/j.powtec.2013.02.003
  • Zhou, H., Wang, G., Jia, C., & Li, C. (2019). A novel, coupled CFD-DEM model for the flow characteristics of particles inside a pipe. Water, 11(11). https://doi.org/10.3390/w11112381