729
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of wavy structure, ambient conditions and solar intensities on flow and temperature distributions in a mini solar flat plate collector using computational fluid dynamics

, , , , &
Article: 2236179 | Received 12 May 2023, Accepted 07 Jul 2023, Published online: 27 Jul 2023

References

  • Akbar, M., Manzoor, T., & Awais, H. (2022). CFD-thermal analysis of flat plate solar collector for different temperature variations. International Journal of Energy and Water Resources, 6(3), 315–321. https://doi.org/10.1007/s42108-021-00177-7
  • Amara, W. B., Aryanfar, Y., Koten, H., Bouabidi, A., Chrigui, M., & Alcaraz, J. L. G. (2023). CFD analysis of the effect of internal peak angle and mass flow rates on the thermal performance of solar air heater with triangle cross-section. Thermal Science, 46–46. https://doi.org/10.2298/TSCI220918046A
  • Anderson, J. D., & Wendt, J. (1995). Computational fluid dynamics (Vol. 206). Springer.
  • Badiei, Z., Eslami, M., & Jafarpur, K. (2020). Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling. Energy, 192, 116719. https://doi.org/10.1016/j.energy.2019.116719
  • Bayat, M., Aminian, J., Bazmi, M., Shahhosseini, S., & Sharifi, K. (2012). CFD modeling of fouling in crude oil pre-heaters. Energy Conversion and Management, 64, 344–350. https://doi.org/10.1016/j.enconman.2012.05.003
  • Celik, I. B. (1999). Introductory turbulence modeling. Western Virginia University.
  • Emani, S., Ramasamy, M., & Shaari, K. Z. B. K. (2016). Effect of shear stress on crude Oil fouling in a heat exchanger tube through CFD simulations. Procedia Engineering, 148, 1058–1065. https://doi.org/10.1016/j.proeng.2016.06.592
  • Fontoura, D., Matos, E., & Nunhez, J. (2013). A three-dimensional two-phase flow model with phase change inside a tube of petrochemical pre-heaters. Fuel, 110, 196–203. https://doi.org/10.1016/j.fuel.2012.09.065
  • Fouzia, D., & Park, T. S. (2017). Effect of inlet velocity on the crude Oil coking and Gas phase formation in a straight pipe. Journal of Applied Mathematics and Physics, 05(01), 17. https://doi.org/10.4236/jamp.2017.51003
  • Haghshenasfard, M., & Hooman, K. (2015). CFD modeling of asphaltene deposition rate from crude oil. Journal of Petroleum Science and Engineering, 128, 24–32. https://doi.org/10.1016/j.petrol.2015.01.037
  • Ibrahim, O., Younes, R., & Ibrahim, M. (2018). Macro flat-plate solar thermal collector with rectangular channels. Journal of Solar Energy Engineering, 140(6). http://doi.org/10.1115/1.4040535
  • Ingle, P., Pawar, A., Deshmukh, B., & Bhosale, K. (2013). CFD analysis of solar flat plate collector. International Journal of Emerging Technology and Advanced Engineering, 3(4), 337–342.
  • Jha, V., Velidi, G., & Emani, S. (2022). Optimization of flame stabilization methods in the premixed microcombustion of hydrogen–air mixture. Heat Transfer, 51(6), 5896–5918. https://doi.org/10.1002/htj.22574
  • Kabir, M. A. (2022). Design and steady state thermal analysis of aircraft fuselage. Journal of Airline Operations and Aviation Management, 1(1), 71–79. https://doi.org/10.56801/jaoam.v1i1.9
  • Kansara, R., Pathak, M., & Patel, V. K. (2021). Performance assessment of flat-plate solar collector with internal fins and porous media through an integrated approach of CFD and experimentation. International Journal of Thermal Sciences, 165, 106932. https://doi.org/10.1016/j.ijthermalsci.2021.106932
  • Karki, S., Haapala, K. R., & Fronk, B. M. (2019). Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Applied Energy, 254, 113649. https://doi.org/10.1016/j.apenergy.2019.113649
  • Knotek, S., Fiebach, A., Schmelter, S., & Schmeyer, E. (2017). Multiphase flow metrology in oil and gas production. EURAMET Project ENG58. Final publishable JPR report.
  • Kohnke, P. (2001). ANSYS theory manual. ANSYS Inc, 40.
  • Li, X.-G., Zhang, L.-H., Zhang, R.-Y., Sun, Y.-L., Jiang, B., Luo, M.-F., & Li, X.-G. (2015). CFD modeling of phase change and coke formation in petroleum refining heaters. Fuel Processing Technology, 134, 18–25. https://doi.org/10.1016/j.fuproc.2015.03.005
  • Lizama-Tzec, F. I., Herrera-Zamora, D. M., Arés-Muzio, O., Gómez-Espinoza, V. H., Santos-González, I., Cetina-Dorantes, M., Vega-Poot, A. G., García-Valladares, O., & Oskam, G. (2019). Electrodeposition of selective coatings based on black nickel for flat-plate solar water heaters. Solar Energy, 194, 302–310. https://doi.org/10.1016/j.solener.2019.10.066
  • Mahdi, J. M., Mohammed, H. I., & Talebizadehsardari, P. (2021). A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Solar Energy, 222, 160–174. http://doi.org/10.1016/j.solener.2021.04.044
  • Mansour, M. K. (2013). Thermal analysis of novel minichannel-based solar flat-plate collector. Energy, 60, 333–343. http://doi.org/10.1016/j.energy.2013.08.013
  • Mukanema, M., & Simate, I. N. (2023). CFD simulation of temperature and Air flow in a natural convection solar tunnel dryer with a bare flat-plate chimney. Energy and Environment Research, 13(1), 1. https://doi.org/10.5539/eer.v13n1p1
  • Nazar, S., Ali, R., Banisharifdehkordi, F., & Ahmadzadeh, S. (2016). Mathematical modeling of coke formation and deposition due to thermal cracking of petroleum fluids. Chemical Engineering & Technology, 39(2), 311–321. https://doi.org/10.1002/ceat.201400528
  • Orszag, S. A. (1970). Analytical theories of turbulence. Journal of Fluid Mechanics, 41(2), 363–386. https://doi.org/10.1017/S0022112070000642
  • Ouni, M., Ladhar, L. M., Omri, M., Jamshed, W., & Eid, M. R. (2022). Solar water-pump thermal analysis utilizing copper–gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: Thermal case study. Case Studies in Thermal Engineering, 30, 101756. https://doi.org/10.1016/j.csite.2022.101756
  • Priyam, A., & Chand, P. (2018). Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater. Renewable Energy, 119, 690–702. http://doi.org/10.1016/j.renene.2017.12.010
  • Said, Z., Sharma, P., Sundar, L. S., Li, C., Tran, D. C., Pham, N. D. K., & Nguyen, X. P. (2022). Improving the thermal efficiency of a solar flat plate collector using MWCNT-Fe3O4/water hybrid nanofluids and ensemble machine learning. Case Studies in Thermal Engineering, 40, 102448. https://doi.org/10.1016/j.csite.2022.102448
  • Seyyedbagheri, H., & Mirzayi, B. (2017). CFD modeling of high inertia asphaltene aggregates deposition in 3D turbulent oil production wells. Journal of Petroleum Science and Engineering, 150, 257–264. https://doi.org/10.1016/j.petrol.2016.12.017
  • Shahzad, F., Jamshed, W., Safdar, R., Hussain, S. M., Nasir, N. A. A. M., Dhange, M., Nisar, K. S., Eid, M. R., Sohail, M., Alsehli, M., & Elfasakhany, A. (2022). Thermal analysis characterisation of solar-powered ship using oldroyd hybrid nanofluids in parabolic trough solar collector: An optimal thermal application. Nanotechnology Reviews, 11(1), 2015–2037. https://doi.org/10.1515/ntrev-2022-0108
  • Sileshi, S. T., Hassen, A. A., & Adem, K. D. (2022). Simulation of mixed-mode solar dryer with vertical air distribution channel. Heliyon, 8(11), e11898. https://doi.org/10.1016/j.heliyon.2022.e11898
  • Singh, I., & Vardhan, S. (2023). Experimental and CFD investigation on heat transfer enhancement in evacuated tube solar collector with coiled wire inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3742–3759. https://doi.org/10.1080/15567036.2023.2201187
  • Souza, B., Matos, E., Guirardello, R., & Nunhez, J. (2006). Predicting coke formation due to thermal cracking inside tubes of petrochemical fired heaters using a fast CFD formulation. Journal of Petroleum Science and Engineering, 51(1), 138–148. https://doi.org/10.1016/j.petrol.2005.11.013
  • Sun, D.-W. (2007). Computational fluid dynamics in food processing. CRC Press.
  • Toapanta, L. F., Anthony Xavier, A., & Quitiaquez Sarzosa, W. (2020). CFD analysis of a solar flat plate collector with different cross sections. Enfoque Ute, 11(2), 95–108. https://doi.org/10.29019/enfoque.v11n2.601
  • Unar, I. N., Maitlo, G., Ahmed, S., Ali, S. S., Memon, A. Q., Kandhro, G. A., & Jatoi, A. S. (2020). Performance evaluation of solar flat plate collector using different working fluids through computational fluid dynamics. SN Applied Sciences, 2(1), 1–10. https://doi.org/10.1007/s42452-019-1685-8
  • Vandrangi, S. K. (2022). Aerodynamic characteristics of Naca 0012 airfoil by Cfd analysis. Journal of Airline Operations and Aviation Management, 1(1), 1–8. https://doi.org/10.56801/jaoam.v1i1.1
  • Varol, Y., & Oztop, H. F. (2008). A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors. Building and Environment, 43(9), 1535–1544. http://doi.org/10.1016/j.buildenv.2007.09.002
  • Velidi, G. (2022). Pressure and velocity variation In remote-controlled plane using Cfd analysis. Journal of Airline Operations and Aviation Management, 1(1), 9–18. https://doi.org/10.56801/jaoam.v1i1.2
  • Wang, N., Zeng, S., Zhou, M., & Wang, S. (2015). Numerical study of flat plate solar collector with novel heat collecting components. International Communications in Heat and Mass Transfer, 69, 18–22. http://doi.org/10.1016/j.icheatmasstransfer.2015.10.012
  • Wilcox, D. C. (1998). Turbulence modeling for CFD (Vol. 2). DCW Industries.