376
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation study on spread angle in oblique cut flip bucket

, , , &
Article: 2236673 | Received 24 Mar 2023, Accepted 10 Jul 2023, Published online: 07 Aug 2023

References

  • Abbaspour, A., Farsadizadeh, D., Dalir, A. H., & Sadraddini, A. A. (2009). Numerical study of hydraulic jumps on corrugated beds using turbulence models. Turkish Journal of Engineering and Environmental Sciences, 33(1), 61–72. https://doi.org/10.3906/muh-0901-7
  • Borthakur, M. P., Biswas, G., Bandyopadhyay, D., & Sahu, K. C. (2019). Dynamics of an arched liquid jet under the influence of gravity. European Journal of Mechanics B-Fluids, 74, 1–9. https://doi.org/10.1016/j.euromechflu.2018.11.002
  • Brackbill, J.U., Kothe, D.B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
  • Cleaver, J. A. S., Ghadiri, M., Tuponogov, V. G., Yates, J. G., & Cheesman, D. J. (1995). Measurement of jet angles in fluidized-beds. Powder Technology, 85(3), 221–226. https://doi.org/10.1016/0032-5910(95)03027-0
  • Deng, J., Wei, W., Tian, Z., Zhang, F., & Yang, Z. (2020). Analysis of pressure differences and water transverse movement in a partial-flip bucket. Journal of Hydraulic Engineering, 146(9). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001780
  • Deng, J., Yang, Z., Tian, Z., Zhang, F., Wei, W., You, X., & Xu, W. (2016). A new type of leak-floor flip bucket. Science China-Technological Sciences, 59(4), 565–572. https://doi.org/10.1007/s11431-015-5925-x
  • Dey, S. (2002). Free overall in open channels: State-of-the-art review (vol 13, p. 247, 2002). Flow Measurement and Instrumentation, 14(3), 129–129. https://doi.org/10.1016/S0955-5986(03)00013-X
  • Fraser, C. N. (2016). Ski-jump energy dissipation: Design of a ski-jump to maximise energy dissipation and aeration [Unpublished doctoral dissertation]. Stellenbosch University.
  • Guha, A., Barron, R. M., & Balachandar, R. (2010). Numerical simulation of high-speed turbulent water jets in air. Journal of Hydraulic Research, 48(1), 119–124. https://doi.org/10.1080/00221680903568667
  • Hamedi, A., Hajigholizadeh, M., & Mansoori, A. (2016). Flow simulation and energy loss estimation in the nappe flow regime of stepped spillways with inclined steps and end sill: A numerical approach. Civil Engineering Journal, 2(9), 426–437. https://doi.org/10.28991/cej-2016-00000047
  • Heidari, T., Karamzadeh, N. S., & Ahadiyan, J. (2019). An experimental investigation of convergent rectangular surface jets: Spreading characteristics of horizontal flow over the bed of deep and stagnant ambient water. International Journal of Civil Engineering, 17(3A), 443–456. https://doi.org/10.1007/s40999-018-0350-8
  • Heller, V., Hager, W. H., & Minor, H.-E. (2005). Ski jump hydraulics (vol 131, p. 347, 2005). Journal of Hydraulic Engineering, 132(10), 1117–1117. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Jiang, X. H., & Zhang, R. (1984). 挑射水股空中掺气扩散特性的初步研究 [A preliminary study on the aeration diffusion characteristics of aerated water jet]. Journal of Hydraulic Engineering, 7, 49–53. CNKI:SUN:SLXB.0.1984-07-006
  • Juon, R., & Hager, W. H. (2000). Flip bucket without and with deflectors. Journal of Hydraulic Engineering-Asce, 126(11), 837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)
  • Kawakami, K. (1973). スキージャンプ型余]水路射出水の水平到達距離に関する研究 [A study on the computation of horizontal distance of jet issued from ski-jump spillway]. Proceedings of the Japan Society of Civil Engineers, 1973(219), 37–44. Japan Society of Civil Engineers. https://doi.org/10.2208/jscej1969.1973.219_37
  • Khalifehei, K., Sadeghi Askari, M., & Azamathulla, H. (2022). Experimental investigation of energy dissipation on flip buckets with triangular deflectors. ISH Journal of Hydraulic Engineering, 28(S1), 292–298. https://doi.org/10.1080/09715010.2020.1775716
  • Kobus, H. (1984). Local air entrainment and detrainment. Symposium on Scale Effects in Modelling Hydraulic Structures, S. 4.10-1-4.10-10. https://doi.org/10.18419/opus-559
  • Li, G., Li, P., Li, X., & Deng, Y. (2019). Numerical optimization of oblique cut bucket and its application in ski jump of shiziya dam. ISH Journal of Hydraulic Engineering, 28(S1), 380–389. https://doi.org/10.1080/09715010.2019.1685915
  • Lian, J., He, J., Gou, W., & Ran, D. (2019). Effects of bucket type and angle on downstream nappe wind caused by a turbulent jet. International Journal of Environmental Research and Public Health, 16(8). https://doi.org/10.3390/ijerph16081360
  • Liu, M., Li, G., Guala, M., & Sun, D. (2017). Experimental research on hydraulics of flood discharge tunnel and improving schemes for choking. Houille Blanche-Revue Internationale De L Eau(1), 24–32. https://doi.org/10.1051/lhb/2017004
  • Liu, X. L., & Liu, J. (1989). 三元空中水舌掺气扩散的试验研究 [Experimental study on the diffusion and aeration of three-dimensional jet]. Journal of Hydraulic Engineering, 11, 10–17. https://doi.org/10.13243/j.cnki.slxb.1989.11.002
  • Lucas, J., Hager, W. H., & Boes, R. M. (2014). Deflector effect on chute flow. Journal of Hydraulic Engineering, 140(6). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000890
  • Mason, P. J., & Arumugam, K. (1985). Free jet scour below dams and flip buckets. Journal of Hydraulic Engineering-Asce, 111(2), 220–235. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:2(220)
  • Mo, H., Chen, H., Luo, L., & Deng, W. (2013). 斜切挑坎水舌入水宽度随切角变化规律研究 [Study on regularity of miter flip bucket's nappe width changing with oblique angle]. Water Resources and Power, 31(11), 124–126, 254. CNKI:SUN:SDNY.0.2013-11-034
  • Naib, S. K. A. (1974). Deflexion of a submerged round jet to increase lateral spreading. La Houille Blanche, 29(6), 455–461. https://doi.org/10.1051/lhb/1974037
  • Pfister, M., & Chanson, H. (2012). Scale effects in physical hydraulic engineering models by Valentin Heller, Journal of Hydraulic Research, 49(3), (2011), pp. 293–306. Journal of Hydraulic Research, 50(2), 244–246. https://doi.org/10.1080/00221686.2012.654671
  • Pfister, M., Hager, W. H., & Boes, R. M. (2014). Trajectories and air flow features of ski jump-generated jets. Journal of Hydraulic Research, 52(3), 336–346. https://doi.org/10.1080/00221686.2013.875072
  • Puentes, N. A. G., Guerra, V. G., Coury, J. R., & Goncalves, J. A. S. (2012). Droplet dispersion angle measurements on a pease-antony venturi scrubber. Brazilian Journal of Chemical Engineering, 29(1), 99–106. https://doi.org/10.1590/S0104-66322012000100011
  • Qian, S., Wu, J., & Ma, F. (2016). Hydraulic performance of ski-jump-step energy dissipater. Journal of Hydraulic Engineering, 142(10), 05016004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001178
  • Rutschmann, P. (1988). Belu¨ftungseinbauten in schussrinnen [Unpublished doctoral dissertation]. VAW, ETH.
  • Speerli, J. (1999). Strömungsprozesse in grundablassstollen flow phenomena in bottom outlets [Unpublished doctoral dissertation]. VAW, ETH.
  • Steiner, R., Heller, V., Hager, W. H., Asce, F., & Minor, H. E. (2008). Deflector ski jump hydraulics. Journal of Hydraulic Engineering-Asce, 134(5), 562–571. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(562)
  • Viti, N., Valero, D., & Gualtieri, C. (2019). Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water, 11(1). https://doi.org/10.3390/w11010028
  • Wang, J., & Luo, B. (2011). 龙开口水电站挑流消能方式 [Discussion on energy dissipation scheme for deflecting flow of Longkaikou hydropower station]. Engineering Journal of Wuhan University, 44(2), 166–169. CNKI:SUN:WSDD.0.2011-02-008
  • Wang, Y., Zhao, J., Zhao, H., Peng, Y., & Xue, Y. (2022). 挑流水舌空中横向扩散比尺效应研究 [Scale effect of transverse diffusion for ski-jump flow]. Water Resources and Power, 40(12), 198–200. https://doi.org/10.20040/j.cnki.1000-7709.2022.20220230
  • Wu, J., Ai, W., & Zhou, Q. (2010). Head loss coefficient of orifice plate energy dissipator. Journal of Hydraulic Research, 48(4), 526–530. https://doi.org/10.1080/00221686.2010.507347
  • Wu, J. H., Wan, B., Ma, F., & Li, T. C. (2015a). Flow choking characteristics of slit-type energy dissipaters. Journal of Hydrodynamics, 27(1), 159–162. https://doi.org/10.1016/S1001-6058(15)60468-1
  • Wu, J. H., Zhang, X. Y., Ma, F., & Wu, W. W. (2015b). Ski jump trajectory with consideration of air resistance. Journal of Hydrodynamics, 27(3), 465–468. https://doi.org/10.1016/S1001-6058(15)60505-4
  • Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3–51. https://doi.org/10.1007/BF01061452
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids a-Fluid Dynamics, 4(7), 1510–1520. https://doi.org/10.1063/1.858424
  • Yamini, O. A., Kavianpour, M. R., & Movahedi, A. (2015). Pressure distribution on the bed of the compound flip buckets. Journal of Computational Multiphase Flows, 7(3), 181–194. https://doi.org/10.1260/1757-482X.7.3.181
  • Yavuz, C. (2021). Effect of water cushion on dynamic pressures at impingement area. Gazi University Journal of Science, 34(1), 45–52. https://doi.org/10.35378/gujs.657473
  • Yavuz, C. (2022). Energy dissipation scale for dam prototypes. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(16), 105–116. https://doi.org/10.54365/adyumbd.1022031
  • Zhang, L., Zhang, J., Guo, Y., & Peng, Y. (2020). Numerical simulation of the hydraulic performances and flow pattern of swallow-tailed flip bucket. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6062780