1,006
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Machine learning-accelerated aerodynamic inverse design

, &
Article: 2237611 | Received 08 May 2023, Accepted 12 Jul 2023, Published online: 21 Jul 2023

References

  • Allender, E. (1992). Applications of time-bounded kolmogorov complexity in complexity theory. In O. Watanabe (Ed.), Kolmogorov Complexity and Computational Complexity (pp. 4–22). Springer. https://doi.org/10.1007/978-3-642-77735-6_2
  • Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151–160. https://doi.org/10.1162/neco.1989.1.1.151
  • Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. https://link.springer.com/book/9780387310732
  • Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s razor. Information Processing Letters, 24(6), 377–380. https://doi.org/10.1016/0020-0190(87)90114-1
  • Chahine, C., Seume, J. R., & Verstraete, T. (2012). The Influence of Metamodeling Techniques on the Multidisciplinary Design Optimization of a Radial Compressor Impeller. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2012-68358
  • Chen, D., Sun, Z., Yao, S., Xu, S., Yin, B., Guo, D., Yang, G., & Ding, S. (2022). Data-driven rapid prediction model for aerodynamic force of high-speed train with arbitrary streamlined head. Engineering Applications of Computational Fluid Mechanics, 16(1), 2191–2206. https://doi.org/10.1080/19942060.2022.2136758
  • Chen, J., Liu, C., Xuan, L., Zhang, Z., & Zou, Z. (2022). Knowledge-based turbomachinery design system via a deep neural network and multi-output Gaussian process. Knowledge-Based Systems, 252, 109352. https://doi.org/10.1016/j.knosys.2022.109352
  • Chen, Q., Wang, J., Pope, P., Chen, W., & Fuge, M. (2021). Inverse design of two-dimensional airfoils using conditional generative models and surrogate log-likelihoods. Journal of Mechanical Design, 144(2), https://doi.org/10.1115/1.4052846
  • Chen, S., Gao, Z., Zhu, X., Du, Y., & Pang, C. (2020). Unstable unsteady aerodynamic modeling based on least squares support vector machines with general excitation. Chinese Journal of Aeronautics, 33(10), 2499–2509. https://doi.org/10.1016/j.cja.2020.03.009
  • Chung-Yuan, H., & Dulikravich, G. S. (1986). Stream function and stream-function-coordinate (SFC) formulation for inviscid flow field calculations. Computer Methods in Applied Mechanics and Engineering, 59(2), 155–177. https://doi.org/10.1016/0045-7825(86)90100-3
  • Doner, N., Ciddi, K., Yalcin, I. B., & Sarivaz, M. (2023). Artificial neural network models for heat transfer in the freeboard of a bubbling fluidised bed combustion system. Case Studies in Thermal Engineering, 103145. https://doi.org/10.1016/j.csite.2023.103145
  • Duan, Y., Zheng, Q., & Jiang, B. (2020). Use of computational fluid dynamics to implement an aerodynamic inverse design method based on exact Riemann solution and moving wall boundary. Engineering Applications of Computational Fluid Mechanics, 14(1), 284–298. https://doi.org/10.1080/19942060.2020.1711812
  • Dulikravich, G. S. (1997). New design concepts for high speed air transport. In H. Sobieczky (Ed.), Cism International Centre for Mechanical Sciences (pp. 159–173). Springer. https://doi.org/10.1007/978-3-7091-2658-5
  • Dulikravich, G. S., Dennis, B. H., Baker, D. P., Kennon, S. R., Orlande, H. R. B., & Colaco, M. J. (2012). Inverse problems in aerodynamics, heat transfer, elasticity and materials design. International Journal of Aeronautical and Space Sciences, 13(4), 405–420. https://doi.org/10.5139/IJASS.2012.13.4.405
  • Fukami, K., Fukagata, K., & Taira, K. (2019). Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870, 106–120. https://doi.org/10.1017/jfm.2019.238
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
  • Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. (2014). Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:1312.6082 [cs]. http://arxiv.org/abs/1312.6082
  • Halder, P., & Kumar, P. M. (2020). Coupled CAD-CFD automated optimization for leading and trailing edge of an axial impulse turbine blade. Ocean Engineering, 213, 107769. https://doi.org/10.1016/j.oceaneng.2020.107769
  • Hicks, R. M., & Henne, P. A. (1978). Wing design by numerical optimization. Journal of Aircraft, 15(7), 407–412. https://doi.org/10.2514/3.58379
  • Hoang, C., Chowdhary, K., Lee, K., & Ray, J. (2022). Projection-based model reduction of dynamical systems using space–time subspace and machine learning. Computer Methods in Applied Mechanics and Engineering, 389, 114341. https://doi.org/10.1016/j.cma.2021.114341
  • Hochreiter, S., & Schmidhuber, J. (1996). LSTM can solve hard long time lag Problems. Proceedings of the 9th International Conference on Neural Information Processing Systems, Denver, Colorado.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Jackson, P. (1999). Introduction to expert systems (3rd ed.). Addison-Wesley.
  • Ji, B., Zhong, K., Xiong, Q., Qiu, P., Zhang, X., & Wang, L. (2022). CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model. Energy, 249, 123670. https://doi.org/10.1016/j.energy.2022.123670
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv e-prints, arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  • Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., & Hoyer, S. (2021). Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21), e2101784118. https://doi.org/10.1073/pnas.2101784118
  • Kou, J., Botero-Bolívar, L., Ballano, R., Marino, O., de Santana, L., Valero, E., & Ferrer, E. (2023). Aeroacoustic airfoil shape optimization enhanced by autoencoders. Expert Systems with Applications, 217, 119513. https://doi.org/10.1016/j.eswa.2023.119513
  • Kou, J., & Zhang, W. (2021). Data-driven modeling for unsteady aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 125, 100725. https://doi.org/10.1016/j.paerosci.2021.100725
  • Koza, J. R., Bennett, F. H., Andre, D., & Keane, M. A. (1996). Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In J. S. Gero, & F. Sudweeks (Eds.), Artificial Intelligence in Design ‘96 (pp. 151–170). Springer Netherlands. http://link.springer.com/10.1007978-94-009-0279-4_9
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541
  • Li, C., Wang, Y., Chen, H., Song, Y., Meng, W., & Xing, H. (2022). Application of an extended two-dimensional inverse method in turbine volute design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(1), 54–66. https://doi.org/10.1177/09544062221119045
  • Li, J., Du, X., & Martins, J. R. R. A. (2022). Machine learning in aerodynamic shape optimization. Progress in Aerospace Sciences, 134, 100849. https://doi.org/10.1016/j.paerosci.2022.100849
  • Li, T., Wu, T., & Liu, Z. (2020). Nonlinear unsteady bridge aerodynamics: Reduced-order modeling based on deep LSTM networks. Journal of Wind Engineering and Industrial Aerodynamics, 198, 104116. https://doi.org/10.1016/j.jweia.2020.104116
  • Liang, E., & Yao, Y. (2023). Blade design and analysis of centrifugal compressors for the transcritical carbon dioxide refrigeration cycle. Case Studies in Thermal Engineering, 45, 102884. https://doi.org/10.1016/j.csite.2023.102884
  • Ling, J., Kurzawski, A., & Templeton, J. (2016). Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807, 155–166. https://doi.org/10.1017/jfm.2016.615
  • Liu, B., Tang, J., Huang, H., & Lu, X.-Y. (2020). Deep learning methods for super-resolution reconstruction of turbulent flows. Physics of Fluids, 32(2), 025105. https://doi.org/10.1063/1.5140772
  • Ma, Y., Chen, C., Fan, T., Lu, H., & Fang, J. (2022). An innovative aerodynamic design methodology of wind turbine blade models for wind tunnel real-time hybrid tests based on genetic algorithm. Ocean Engineering, 257, 111724. https://doi.org/10.1016/j.oceaneng.2022.111724
  • Madadi, A., Kermani, M. J., & Nili-Ahmadabadi, M. (2015). Three-dimensional design of axial flow compressor blades using the ball-spine algorithm. Journal of Applied Fluid Mechanics, 8(4), 683–691. https://doi.org/10.18869/acadpub.jafm.67.223.21543
  • Maeyama, H., Imamura, T., Osaka, J., & Kurimoto, N. (2022). Unsteady aerodynamic simulations by the lattice Boltzmann method with near-wall modeling on hierarchical Cartesian grids. Computers & Fluids, 233, 105249. https://doi.org/10.1016/j.compfluid.2021.105249
  • Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
  • Morgado-Dias, F., & Mota, A. (2003). Regularization versus early stopping: A case study with a real system.
  • Mueller, L., Alsalihi, Z., & Verstraete, T. (2013). Multidisciplinary Optimization of a Turbocharger Radial Turbine. Journal of Turbomachinery, 135(2), 021022. https://doi.org/10.1115/1.4007507
  • Murphy, K. P. (2012). Machine learning: A probabilistic perspective. The MIT Press.
  • Neal, R. M. (1996). Bayesian learning for neural networks (Vol. 118). Springer. http://link.springer.com/10.1007978-1-4612-0745-0
  • Nili-Ahmadabadi, M., Aghabozorgi, F., Cho, D.-S., & Kim, K. C. (2021). Development and validation of a hybrid aerodynamic design method for curved diffusers using genetic algorithm and ball-spine inverse design method. Alexandria Engineering Journal, 60(3), 3021–3036. https://doi.org/10.1016/j.aej.2021.01.034
  • Pascanu, R., Mikolov, T., & Bengio, Y. (2012). On the difficulty of training recurrent neural networks. 30th International Conference on Machine Learning, ICML 2013.
  • Renganathan, S. A., Maulik, R., & Ahuja, J. (2021). Enhanced data efficiency using deep neural networks and Gaussian processes for aerodynamic design optimization. Aerospace Science and Technology, 111, 106522. https://doi.org/10.1016/j.ast.2021.106522
  • Rozov, V., & Breitsamter, C. (2021). Data-driven prediction of unsteady pressure distributions based on deep learning. Journal of Fluids and Structures, 104, 103316. https://doi.org/10.1016/j.jfluidstructs.2021.103316
  • Safari, M., Nili-Ahmadabadi, M., Ghaei, A., & Shirani, E. (2014). Inverse design in subsonic and transonic external flow regimes using Elastic Surface Algorithm. Computers & Fluids, 102, 41–51. https://doi.org/10.1016/j.compfluid.2014.06.005
  • Schmidhuber, J. (1997). Discovering neural nets with low kolmogorov complexity and high generalization capability. Neural Networks, 10(5), 857–873. https://doi.org/10.1016/S0893-6080(96)00127-X
  • Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets. Applied Mathematics Letters, 4(6), 77–80. https://doi.org/10.1016/0893-9659(91)90080-F
  • Spalart, P., & Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. AIAA, 439. https://doi.org/10.2514/6.1992-439
  • Sun, G., Sun, Y., & Wang, S. (2015). Artificial neural network based inverse design: Airfoils and wings. Aerospace Science and Technology, 42, 415–428. https://doi.org/10.1016/j.ast.2015.01.030
  • Sun, G., & Wang, S. (2019). A review of the artificial neural network surrogate modeling in aerodynamic design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(16), 5863–5872. https://doi.org/10.1177/0954410019864485
  • Tandis, E., & Assareh, E. (2017). Inverse design of airfoils via an intelligent hybrid optimization technique. Engineering with Computers, 33(3), 361–374. https://doi.org/10.1007/s00366-016-0478-6
  • Teng, J., Yuan, Z., & Wang, J. (2022). Subgrid-scale modelling using deconvolutional artificial neural networks in large eddy simulations of chemically reacting compressible turbulence. International Journal of Heat and Fluid Flow, 96, 109000. https://doi.org/10.1016/j.ijheatfluidflow.2022.109000
  • Titterington, D. M. (2004). Bayesian methods for neural networks and related models. Statistical Science, 19(1), https://doi.org/10.1214/088342304000000099
  • Torregrosa, A. J., García-Cuevas, L. M., Quintero, P., & Cremades, A. (2021). On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerospace Science and Technology, 115, 106845. https://doi.org/10.1016/j.ast.2021.106845
  • Tyan, M., Choi, C.-K., Nguyen, T. A., & Lee, J.-W. (2022). Rapid airfoil inverse design method with a deep neural network and hyperparameter selection. International Journal of Aeronautical and Space Sciences, 24(1), 33–46. https://doi.org/10.1007/s42405-022-00507-x
  • Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P., & Koumoutsakos, P. (2018). Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213), 20170844. https://doi.org/10.1098/rspa.2017.0844
  • Wang, C., Wang, S., Wang, L., Cao, C., Sun, G., Li, C., & Yang, Y. (2022). Framework of nacelle inverse design method based on improved generative adversarial networks. Aerospace Science and Technology, 121, 107365. https://doi.org/10.1016/j.ast.2022.107365
  • Wang, J., Li, R., He, C., Chen, H., Cheng, R., Zhai, C., & Zhang, M. (2022). An inverse design method for supercritical airfoil based on conditional generative models. Chinese Journal of Aeronautics, 35(3), 62–74. https://doi.org/10.1016/j.cja.2021.03.006
  • Wang, K., Han, Z.-H., Zhang, K.-S., & Song, W.-P. (2023). An efficient geometric constraint handling method for surrogate-based aerodynamic shape optimization. Engineering Applications of Computational Fluid Mechanics, 17(1), e2153173. https://doi.org/10.1080/19942060.2022.2153173
  • Warey, A., Raul, V., Kaushik, S., Han, T., & Chakravarty, R. (2022). Generative inverse design of aerodynamic shapes using conditional invertible neural networks. Journal of Computing and Information Science in Engineering, 23(3). https://doi.org/10.1115/1.4054715
  • Woods, L. C. (1955). The design of two-dimensional aerofoils with mixed boundary conditions. Quarterly of Applied Mathematics, 13(2), 139–146. http://www.jstor.org/stable/43634200.
  • Yang, S., Lee, S., & Yee, K. (2022). Inverse design optimization framework via a two-step deep learning approach: application to a wind turbine airfoil. Engineering with Computers, 39(3), 2239–2255. https://doi.org/10.1007/s00366-022-01617-6
  • Yu, J., & Hesthaven, J. S. (2018). Flowfield reconstruction method using artificial neural network. AIAA Journal, 57(2), 482–498. https://doi.org/10.2514/1.J057108
  • Yu, K., Chen, Y., Huang, S., & Xu, J. (2020). Inverse design method on scramjet nozzles based on maximum thrust theory. Acta Astronautica, 166, 162–171. https://doi.org/10.1016/j.actaastro.2019.10.024
  • Yuhui, Q., Jinxin, C., Shuyang, C., & Yaojun, G. (2022). Numerical simulation of wind loads and aerodynamic characteristics of streamlined bridge decks under tornado-like vortices. Journal of Fluids and Structures, 113, 103623. https://doi.org/10.1016/j.jfluidstructs.2022.103623
  • Zhang, H., Li, J., & Yang, Z. (2023). Double-decoupled inverse design of natural laminar flow nacelle under transonic conditions. Chinese Journal of Aeronautics, 36(6), 1–18. https://doi.org/10.1016/j.cja.2023.04.016
  • Zhang, X., Xie, F., Ji, T., Zhu, Z., & Zheng, Y. (2021). Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization. Computer Methods in Applied Mechanics and Engineering, 373, 113485. https://doi.org/10.1016/j.cma.2020.113485
  • Zhu, Y., Ju, Y., & Zhang, C. (2020). Proper orthogonal decomposition assisted inverse design optimisation method for the compressor cascade airfoil. Aerospace Science and Technology, 105, 105955. https://doi.org/10.1016/j.ast.2020.105955