1,892
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Reconstruction of 3D flow field around a building model in wind tunnel: a novel physics-informed neural network framework adopting dynamic prioritization self-adaptive loss balance strategy

, , , &
Article: 2238849 | Received 18 Jan 2023, Accepted 14 Jul 2023, Published online: 25 Jul 2023

References

  • Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18, 1–43. https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
  • Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., & Kaushik, S. (2019). Prediction of aerodynamic flow fields using convolutional neural networks. Computational Mechanics, 64(2), 525–545. https://doi.org/10.1007/s00466-019-01740-0
  • Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2022). Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12), 1727–1738. https://doi.org/10.1007/s10409-021-01148-1
  • Chen, Q., & Xu, W. (1998). A zero-equation turbulence model for indoor airflow simulation. Energy and Buildings, 28(2), 137–144. https://doi.org/10.1016/S0378-7788(98)00020-6
  • Chen, Z., Liu, T., Li, M., Yu, M., Lu, Z., & Liu, D. (2019). Dynamic response of railway vehicles under unsteady aerodynamic forces caused by local landforms. Wind and Structures, 29(3), 149–161. https://doi.org/10.12989/was.2019.29.3.149
  • Chen, Z., Liu, T., Li, W., Guo, Z., & Xia, Y. (2021). Aerodynamic performance and dynamic behaviors of a train passing through an elongated hillock region beside a windbreak under crosswinds and corresponding flow mitigation measures. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104434. https://doi.org/10.1016/j.jweia.2020.104434
  • Chen, Z. W., Ni, Y. Q., Wang, Y. W., Wang, S. M., & Liu, T. (2022). Mitigating crosswind effect on high-speed trains by active blowing method: A comparative study. Engineering Applications of Computational Fluid Mechanics, 16(1), 1064–1081. https://doi.org/10.1080/19942060.2022.2064921
  • Choi, S., Jung, I., Kim, H., Na, J., & Lee, J. M. (2022). Physics-informed deep learning for data-driven solutions of computational fluid dynamics. Korean Journal of Chemical Engineering, 39(3), 515–528. https://doi.org/10.1007/s11814-021-0979-x
  • Eivazi, H., Tahani, M., Schlatter, P., & Vinuesa, R. (2022). Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations. Physics of Fluids, 34(7), 065129. https://doi.org/10.1063/5.0095270
  • Eivazi, H., & Vinuesa, R. (2022). Physics-informed deep-learning applications to experimental fluid mechanics. arXiv preprint arXiv:2203.15402.
  • Guo, M., Haque, A., Huang, D., Yeung, S., & Li, F. (2018). Dynamic task prioritization for multitask learning. 15th European Conference on Computer Vision (ECCV 2018), Munich, Germany, September 8–14.
  • Guo, Z., Liu, T., Chen, Z., Xia, Y., Li, W., & Li, L. (2020). Aerodynamic influences of bogie’s geometric complexity on high-speed trains under crosswind. Journal of Wind Engineering and Industrial Aerodynamics, 196, 104053. https://doi.org/10.1016/j.jweia.2019.104053
  • He, K., Minelli, G., Su, X., Gao, G., & Krajnović, S. (2021). Influence of the rounded rear edge on wake bi-stability of a notchback bluff body. Physics of Fluids, 33(11), 115107. https://doi.org/10.1063/5.0071925
  • Kataoka, H., Ono, Y., & Enoki, K. (2020). Applications and prospects of CFD for wind engineering fields. Journal of Wind Engineering and Industrial Aerodynamics, 205, 104310. https://doi.org/10.1016/j.jweia.2020.104310
  • Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. Ieee Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, Utah, USA, June 18–22.
  • Li, C., Li, X., Su, Y., & Zhu, Y. (2013). Zero-equation turbulence model for outdoor airflow simulation. Journal of Tsinghua University (Science and Technology), 53, 589–594. http://jst.tsinghuajournals.com/CN/Y2013/V53/I5/589
  • Lin, T., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Ieee International Conference on Computer Vision (ICCV 2017), Venice, Italy, October 22–29.
  • Liu, T., Chen, Z., Guo, Z., & Krajnović, S. (2020). Reasonable pressure tap layout to measure the aerodynamic forces of a train at different yaw angles. Measurement, 166, 108255. https://doi.org/10.1016/j.measurement.2020.108255
  • Luo, S., Vellakal, M., Koric, S., Kindratenko, V., & Cui, J. (2020). Parameter identification of RANS turbulence model using physics-embedded neural network. International Conference on High Performance Computing, Frankfurt, Germany, June 21–25.
  • Meng, X., Li, Z., Zhang, D., & Karniadakis, G. E. (2020). PPINN: Parareal physics-informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineering, 370, 113250. https://doi.org/10.1016/j.cma.2020.113250
  • Meng, Y., & Hibi, K. (1998). Turbulent measurments of the flow field around a high-rise building. Wind Engineers, JAWE, 1998(76), 55–64. https://doi.org/10.5359/jawe.1998.76_55
  • Milano, M., & Koumoutsakos, P. (2002). Neural network modeling for near wall turbulent flow. Journal of Computational Physics, 182(1), 1–26. https://doi.org/10.1006/jcph.2002.7146
  • Pache, R., & Rung, T. (2022). Data-driven surrogate modeling of aerodynamic forces on the superstructure of container vessels. Engineering Applications of Computational Fluid Mechanics, 16(1), 746–763. https://doi.org/10.1080/19942060.2022.2044383
  • Prandtl, L. (1925). 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Journal of Applied Mathematics and Mechanics, 5(2), 136–139.  https://doi.org/10.1002/zamm.19250050212
  • Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
  • Rao, C., Sun, H., & Liu, Y. (2020). Physics-informed deep learning for incompressible laminar flows. Theoretical and Applied Mechanics Letters, 10(3), 207–212. https://doi.org/10.1016/j.taml.2020.01.039
  • Riel, B., Minchew, B., & Bischoff, T. (2021). Data-driven inference of the mechanics of slip along glacier beds using physics-informed neural networks: Case study on rutford Ice stream, antarctica. Journal of Advances in Modeling Earth Systems, 13(11), e2021MS002621. https://doi.org/10.1029/2021MS002621
  • Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D. E., & Kuhl, E. (2020). Physics-informed neural networks for cardiac activation mapping. Frontiers in Physics, 8, 42. https://doi.org/10.3389/fphy.2020.00042
  • Song, J.-L., Li, J.-W., Xu, R.-Z., & Flay, R. G. (2022). Field measurements and CFD simulations of wind characteristics at the Yellow River bridge site in a converging-channel terrain. Engineering Applications of Computational Fluid Mechanics, 16(1), 58–72. https://doi.org/10.1080/19942060.2021.2004240
  • Sun, Y., Sun, Q., & Qin, K. (2021). Physics-based deep learning for flow problems. Energies, 14(22), 7760. https://doi.org/10.3390/en14227760
  • Wessels, H., Weißenfels, C., & Wriggers, P. (2020). The neural particle method – An updated Lagrangian physics informed neural network for computational fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 368, 113127. https://doi.org/10.1016/j.cma.2020.113127
  • Xiang, Z., Peng, W., Liu, X., & Yao, W. (2022). Self-adaptive loss balanced Physics-informed neural networks. Neurocomputing, 496, 11–34. https://doi.org/10.1016/j.neucom.2022.05.015
  • Yuan, L., Ni, Y., Deng, X., & Hao, S. (2022). A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. Journal of Computational Physics, 462, 111260. https://doi.org/10.1016/j.jcp.2022.111260
  • Zhang, J., Wang, F., Guo, Z., Han, S., Gao, G., & Wang, J. (2022). Investigation of the wake flow of a simplified heavy vehicle with different aspect ratios. Physics of Fluids, 34(6), 065135. doi:10.1063/5.0094534