702
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Towards a high-resolution modelling scheme for local-scale urban flood risk assessment based on digital aerial photogrammetry

, , , , &
Article: 2240392 | Received 15 Apr 2023, Accepted 19 Jul 2023, Published online: 16 Aug 2023

References

  • AIDR. (2017). Australian disaster resilience guideline, 7–3.
  • Atta-ur-Rahman, Parvin, G. A., Shaw, R., & Surjan, A. (2016). Urban disasters and resilience in Asia. Urban Disasters Resilience in Asia, 35–47. https://doi.org/10.1016/B978-0-12-802169-9.00003-3
  • Baba, Y., Ishigaki, T., & Toda, K. (2017). Experimental studies on safety evacuation from underground spaces under inundated situations. Journal of JSCE, 5(1), 269–278. https://doi.org/10.2208/journalofjsce.5.1_269
  • Bates, P. D., Dawson, R. J., Hall, J. W., Horritt, M. S., Nicholls, R. J., Wicks, J., & Ali Mohamed Hassan, M. A. (2005). Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coastal Engineering, 52(9), 793–810. https://doi.org/10.1016/j.coastaleng.2005.06.001
  • Bermúdez, M., & Zischg, A. P. (2018). Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling. Natural Hazards, 92(3), 1633–1648. https://doi.org/10.1007/s11069-018-3270-7
  • BMT-WBM. (2016). TUFLOW user manual build 2016-03-AE.
  • BMT-WBM. (2018). TUFLOW classic/HPC user manual build 2018-03-AD.
  • Bocanegra, R. A., Vallés-Morán, F. J., & Francés, F. (2020). Review and analysis of vehicle stability models during floods and proposal for future improvements. Journal of Flood Risk Management, 13(S1), 1–13. https://doi.org/10.1111/jfr3.12551
  • Brunner, G. W. (2016). HEC-RES river analysis system – user’s manual version 5.0. US Army Corps of Engineers. Institute ForWater Resources, Hydrologic Engineering Center (HEC), 962.
  • Brunner, M. I., Viviroli, D., Sikorska, A. E., Vannier, O., Favre, A.-C., & Seibert, J. (2017). Flood type specific construction of synthetic design hydrographs. Water Resources Research, 53, 1390–1406. https://doi.org/10.1002/2016WR019535
  • Chandra, R., Saha, U., & Mujumdar, P. P. (2015). Model and parameter uncertainty in IDF relationships under climate change. Advances in Water Resources, 79, 127–139. https://doi.org/10.1016/j.advwatres.2015.02.011
  • Collischonn, W., & Pontes, P. R. M. (2016). Large-scale hydrological and hydrodynamic modelling of La Plata river basin. https://doi.org/10.13140/RG.2.2.19006.48963
  • Corringham, T. W., & Cayan, D. R. (2019). The effect of El Niño on flood damages in the western United States. Weather, Climate, and Society, 11(3), 489–504. https://doi.org/10.1175/WCAS-D-18-0071.1
  • Costabile, P., Costanzo, C., De Lorenzo, G., & Macchione, F. (2020). Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model? Journal of Hydrology, 580, 124231. https://doi.org/10.1016/j.jhydrol.2019.124231
  • Darwish, M. S., & Moukalled, F. (2003). TVD schemes for unstructured grids. International Journal of Heat and Mass Transfer, 46(4), 599–611. https://doi.org/10.1016/S0017-9310(02)00330-7
  • Dazzi, S., Vacondio, R., & Mignosa, P. (2019). Integration of a levee breach erosion model in a GPU-accelerated 2D shallow water equations code. Water Resources Research, 55(1), 682–702. https://doi.org/10.1029/2018WR023826
  • Douglas, I., Garvin, S., Lawson, N., Richards, J., Tippett, J., & White, I. (2010). Urban pluvial flooding: A qualitative case study of cause, effect and nonstructural mitigation. Journal of Flood Risk Management, 3(2), 112–125. https://doi.org/10.1111/j.1753-318X.2010.01061.x
  • England, J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas, W. O., Veilleux, A. G., Kiang, J. E., & Mason, R. R. (2015). Guidelines for determining flood flow frequency. Bulletin 17C.
  • Environment Agency. (2018). Carlisle flood investigation report.
  • Forzieri, G., Castelli, F., & Preti, F. (2012). Advances in remote sensing of hydraulic roughness. International Journal of Remote Sensing, 33(2), 630–654. https://doi.org/10.1080/01431161.2010.531788
  • Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 40–48. https://doi.org/10.1016/j.jhydrol.2011.10.009
  • Harten, A., Lax, P. D., & VanLeer, B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAMRev, 25, 35–61. https://doi.org/10.1137/1025002
  • Hasan, H. H., Mohd Razali, S. F., Ahmad Zaki, A. Z. I., & Mohamad Hamzah, F. (2019). Integrated hydrological-hydraulic model for flood simulation in tropical urban catchment. Sustainability, 11(23), 6700. https://doi.org/10.3390/su11236700
  • Hirsch, C. (1990). Numerical computation of internal and external flows. Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley.
  • Huang, G. R., Luo, H. W., Lu, X. X., Yang, C. H., Wang, Z., Huang, T., & Ma, J. G. (2020). Study on risk analysis and zoning method of urban flood disaster. Water Resources Protection, 36(6), 1–6. https://doi.org/10.3880/j.issn.1004-6933.2020.06.001
  • Jawahar, P., & Kamath, H. (2000). A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids. Journal of Computational Physics, 164(1), 165–203. https://doi.org/10.1006/jcph.2000.6596
  • Kim, J., Warnock, A., Ivanov, V. Y., & Katopodes, N. D. (2012). Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Advances in Water Resources, 37, 104–126. https://doi.org/10.1016/j.advwatres.2011.11.009
  • Klein, B., Pahcow, M., & Hundeoha, Y. (2010). Probability analysis of hydrological loads for the design of flood control systems using copulas. Journal of Hydrologic Engineering, 15(5), 360–369. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000204
  • Leitão, J. P., & de Sousa, L. M. (2018). Towards the optimal fusion of high-resolution digital elevation models for detailed urban flood assessment. Journal of Hydrology, 561, 651–661. https://doi.org/10.1016/j.jhydrol.2018.04.043
  • Leitão, J. P., Moy De Vitry, M., Scheidegger, A., & Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20(4), 1637–1653. https://doi.org/10.5194/hess-20-1637-2016
  • Leitão, J. P., Prodanović, D., & Maksimović, Č. (2016). Improving merge methods for grid-based digital elevation models. Computers & Geosciences, 88, 115–131. https://doi.org/10.1016/j.cageo.2016.01.001
  • Li, W., Lin, K., Zhao, T., Lan, T., Chen, X., Du, H., & Chen, H. (2019). Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models. Journal of Hydrology, 572, 108–120. https://doi.org/10.1016/j.jhydrol.2019.03.002
  • Macchione, F., Costabile, P., Costanzo, C., & De Santis, R. (2019). Moving to 3-D flood hazard maps for enhancing risk communication. Environmental Modelling & Software, 111, 510–522. https://doi.org/10.1016/j.envsoft.2018.11.005
  • Martínez-Gomariz, E., Gómeza, M., Russob, B., & Djordjevićc, S., (2016). Stability criteria for flooded vehicles: A state-of-the-art review. Journal of Flood Risk Management, 11. https://doi.org/10.1002/jfr3.12262
  • Mediero, L., Jimenez-Alvarez, A., & Garrote, L. (2010). Design flood hydrographs from the relationship between flood peak and volume. Hydrology and Earth System Sciences, 7, 4817–4849. https://doi.org/10.5194/hessd-7-4817-2010
  • Milanesi, L., Pilotti, M., & Bacchi, B. (2016). Using web-based observations to identify thresholds of a person’s stability in a flow. Water Resources Research, 52(10), 7793–7805. https://doi.org/10.1002/2016WR019182
  • Milanesi, L., Pilotti, M., Belleri, A., Marini, A., & Fuchs, S. (2018). Vulnerability to flash floods: A simplified structural model for masonry buildings. Water Resources Research, 54(10), 7177–7197. https://doi.org/10.1029/2018WR022577
  • Ministry of Ecology and Environment. (2017). Bulletin on ecological and environmental conditions of China.
  • Mungkasi, S., & Roberts, S. G. (2013). Validation of ANUGA hydraulic model using exact solutions to shallow water wave problems. Journal of Physics: Conference Series, 423, 0012029–029. https://doi.org/10.1088/1742-6596/423/1/012029
  • Munoz, D. H., & Constantinescu, G. (2018). A fully 3-D numerical model to predict flood wave propagation and assess efficiency of flood protection measures. Advances in Water Resources, 122, 148–165. https://doi.org/10.1016/j.advwatres.2018.10.014
  • Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., AghaKouchak, A., Sanders, B., Koren, V., Cui, Z., & Smith, M. (2016). A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of Hydrology, 541, 401–420. https://doi.org/10.1016/j.jhydrol.2015.10.047
  • Olbert, A. I., Comer, J., Nash, S., & Hartnett, M. (2017). High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork city example. Coastal Engineering, 121, 278–296. https://doi.org/10.1016/j.coastaleng.2016.12.006
  • Papaioannou, G., Loukas, A., Vasiliades, L., & Aronica, G. T. (2016). Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards, 83(S1), 117–132. https://doi.org/10.1007/s11069-016-2382-1
  • Pirnia, A., Darabi, H., Choubin, B., Omidvar, E., Onyutha, C., & Haghighi, A. T. (2019). Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. Journal of Hydro-Environment Research, 25, 12–24. https://doi.org/10.1016/j.jher.2019.05.001
  • Pirnia, A., Golshan, M., Darabi, H., Adamowski, J., & Rozbeh, S. (2019). Using the mann–kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change, 10(4), 725–742. https://doi.org/10.2166/wcc.2018.162
  • Prakash, M., Rothauge, K., & Cleary, P. W. (2014). Modelling the impact of dam failure scenarios on flood inundation using SPH. Applied Mathematical Modelling, 38(23), 5515–5534. https://doi.org/10.1016/j.apm.2014.03.011
  • Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357–372. https://doi.org/10.1016/0021-9991(81)90128-5
  • Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., & Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, 584. https://doi.org/10.1016/j.jhydrol.2019.124308
  • Rosbjerg, D., Blöschl, G., Burn, D.H., Castellarin, A., Croke, B., Baldassarre, G.D., Iacobellis, V., Kjeldsen, T.R., Kuczera, G., & Merz, R. (2013). Runoff prediction in ungauged basins: Prediction of floods in ungauged basins. Cambridge Univ. Press.
  • Sanches, F., Verdum, R., & Fisch, G. (2019). Extreme rainfall events in the southwest of Rio Grande do Sul (Brazil) and its association with the sandization process. American Journal of Climate Change, 08(4), 441–453. https://doi.org/10.4236/ajcc.2019.84024
  • Sanders, B. F., & Schubert, J. E. (2019). PRIMo: Parallel raster inundation model. Advances in Water Resources, 126, 79–95. https://doi.org/10.1016/j.advwatres.2019.02.007
  • Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to monsoon Asia: A review. Natural Hazards, 33(2), 283–301. https://doi.org/10.1023/B:NHAZ.0000037035.65105.95
  • Smith, G., Davey, E., & Cox, R. (2014). Flood hazard. In Water Research Laboratory Technical Report, 7, 17.
  • Sy, B., Frischknecht, C., Dao, H., Consuegra, D., & Giuliani, G. (2019). Flood hazard assessment and the role of citizen science. Journal of Flood Risk Management, 12, 1–14. https://doi.org/10.1111/jfr3.12519
  • Tanaka, T., Kiyohara, K., & Tachikawa, Y. (2020). Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan. Journal of Hydrology, 584, 124706. https://doi.org/10.1016/j.jhydrol.2020.124706
  • Tanaka, T., Tachikawa, Y., Iachikawa, Y., & Yorozu, K. (2017). Impact assessment of upstream flooding on extreme flood frequency analysis by incorporating a flood-inundation model for flood risk assessment. Journal of Hydrology, 554, 370–382. https://doi.org/10.1016/j.jhydrol.2017.09.012
  • Tang, H. S., Chien, S. I., Temimi, M., Blain, C. A., & Ke, Q. (2013). Vulnerability of population and transportation infrastructure at the east bank of Delaware bay due to coastal flooding in sea-level rise conditions. Natural Hazards, 69(1), 141–163. https://doi.org/10.1007/s11069-013-0691-1
  • Tang, H. S., Kraatz, S., Wu, X. G., Cheng, W. L., Qu, K., & Polly, J. (2013). Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: Method, implementation, and experiment. Ocean Engineering, 62, 56–67. https://doi.org/10.1016/j.oceaneng.2012.12.050
  • Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006
  • Torabi Haghighi, A., Darabi, H., Shahedi, K., Solaimani, K., & Kløve, B. (2020). A scenario-based approach for assessing the hydrological impacts of land Use and climate change in the marboreh watershed, Iran. Environmental Modeling & Assessment, 25(1), 41–57. https://doi.org/10.1007/s10666-019-09665-x
  • Trepekli, K., Balstrøm, T., Friborg, T., Fog, B., Allotey, A. N., Kofie, R. Y., & Møller-Jensen, L. (2022). UAV-borne, LiDAR-based elevation modelling: A method for improving local-scale urban flood risk assessment. Natural Hazards, 113(1), 423–451. https://doi.org/10.1007/s11069-022-05308-9
  • Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2012). Sph modeling of shallow flow with open boundaries for practical flood simulation. Journal of Hydraulic Engineering, 138(6), 530–541. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000543
  • Vercruysse, K., Dawson, D. A., Glenis, V., Bertsch, R., Wright, N., & Kilsby, C. (2019). Developing spatial prioritization criteria for integrated urban flood management based on a source-to-impact flood analysis. Journal of Hydrology, 578, 124038. https://doi.org/10.1016/j.jhydrol.2019.124038
  • Wang, F., Shao, Z. Y., Gong, H. F., Xu, L., Scott, A. Y., Ma, H. Y., & Chai, H. X. (2022). Experimental and numerical investigation of flow distribution pattern at a T-shape roadway crossing under extreme storms. Engineering Applications of Computational Fluid Mechanics, 16(1), 2286–2300. https://doi.org/10.1080/19942060.2022.2141329
  • Wu, Y., Zhong, P., Zhang, Y., Xu, B., Ma, B., & Yan, K. (2015). Integrated flood risk assessment and zonation method: A case study in Huaihe River basin, China. Natural Hazards, 78(1), 635–651. https://doi.org/10.1007/s11069-015-1737-3
  • Xia, J., Falconer, R. A., Wang, Y., & Xiao, X. (2014). New criterion for the stability of a human body in floodwaters. Journal of Hydraulic Research, 52(1), 93–104. https://doi.org/10.1080/00221686.2013.875073
  • Xia, X., Liang, Q., & Ming, X. (2019). A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132. https://doi.org/10.1016/j.advwatres.2019.103392
  • Xiao, Y., Guo, S., Liu, P., Yan, B., & Chen, L. (2009). Design flood hydrograph based on multicharacteristic synthesis index method. Journal of Hydrologic Engineering, 14(12), 1359–1364. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:12(1359)
  • Xiao, Y., Song, H. H., Chen, Y. J., Xu, H. J., & Bai, Y. H. (2022). Effective simulation of flow in a moderately curved bend with a single short branch to support the design optimization of river-branch–plant configurations. Engineering Applications of Computational Fluid Mechanics, 16(1), 1420–1443. https://doi.org/10.1080/19942060.2022.2093276
  • Xu, H., & Luo, Y. (2015). Climate change and its impacts on river discharge in two climate regions in China. Hydrology and Earth System Sciences, 19(11), 4609–4618. https://doi.org/10.5194/hess-19-4609-2015
  • Xu, Z. X., Reng, M. F., & Chen, H. (2021). Analysis on urban flooding risk caused by flood tide combination in coastal cities. Water Resources Protection, 37(2), 10–14. https://doi.org/10.3880/j.issn.1004-6933.2021.02.002
  • Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., & Bruneau, P. (2002). Approach for describing statistical properties of flood hydrograph. Journal of Hydrologic Engineering, 7(2), 147–153. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:2(147)
  • Zhao, J., Hu, Q. F., & Wang, L. H. (2020). Analysis of precipitation characteristics in taihu lake basin based on MSWEP. Water Resources Protection, 36(2), 27–33. https://doi.org/10.3880/j.issn.1004-6933.2020.02.005
  • Zhou, Z., Smith, J. A., & Yang, L. (2017). The complexities of urban flood response: Flood frequency analyses for the charlotte metropolitan region. Water Resources Research, 53(8), 7401–7425. https://doi.org/10.1002/2016WR019997
  • Zhu, Z., Wright, D. B., & Yu, G. (2018). The impact of rainfall space-time structure in flood frequency analysis. Water Resources Research, 54(11), 8983–8998. https://doi.org/10.1029/2018WR023550
  • Ziegler, A. D. (2012). Reduce urban flood vulnerability. Nature, 481(7380), 145. https://doi.org/10.1038/481145b