414
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of a novel small waterplane area USV advancing in calm water and in waves using the higher-order Rankine source method

, ORCID Icon &
Article: 2241892 | Received 03 Sep 2022, Accepted 24 Jul 2023, Published online: 24 Aug 2023

References

  • Begovic, E., Bertorello, C., & Mancini, S. (2015). Hydrodynamic performances of small size swath craft. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 66(4), 1–22.
  • Deng, R., Song, Z. J., Ren, H., Li, H., & Wu, T. C. (2022). Investigation on the effect of container configurations and forecastle fairings on wind resistance and aerodynamic performance of large container ships. Engineering Applications of Computational Fluid Mechanics, 16(1), 1279–1304. https://doi.org/10.1080/19942060.2022.2086177
  • Feng, H., Wang, Z. M., Todd, P. A., & Lee, H. P. (2019). Simulations of self-propelled anguilliform swimming using the immersed boundary method in OpenFOAM. Engineering Applications of Computational Fluid Mechanics, 13(1), 438–452. https://doi.org/10.1080/19942060.2019.1609582
  • Gong, J., Luo, W. Z., Wu, T., & Zhang, Z. Y. (2022). Numerical analysis of vortex and cavitation dynamics of an axial-flow pump. Engineering Applications of Computational Fluid Mechanics, 16(1), 1921–1938. https://doi.org/10.1080/19942060.2022.2122570
  • Hong, L., Zhu, R., Miao, G., Fan, J., & Li, S. (2016). An investigation into added resistance of vessels advancing in waves. Ocean Engineering, 123, 238–248. https://doi.org/10.1016/j.oceaneng.2016.07.033
  • Kring, D. (1994). Time domain ship motions by a three-dimensional Rankine panel method [Doctoral dissertation]. Massachusetts institute of technology.
  • Kring, D., Korsmeyer, T., Singer, J., & White, J. (2000). Analyzing mobile offshore bases using accelerated boundary-element methods. Marine Structures, 13(4–5), 301–313. https://doi.org/10.1016/S0951-8339(00)00033-2
  • Kring, D., Milewski, W., & Fine, N. (2004, August 8). Validation of a nurbs-based bem for multihull ship seakeeping. 25th symposium on Naval Hydrodynamics, St. John’s.
  • Lee, J., Kim, Y., Kim, B., & Gerhardt, F. (2021). Comparative study on analysis methods for added resistance of four ships in head and oblique waves. Ocean Engineering, 236, 109552. https://doi.org/10.1016/j.oceaneng.2021.109552
  • Li, J., Xiang, X., & Yang, S. (2022). Robust adaptive neural network control for dynamic positioning of marine vessels with prescribed performance under model uncertainties and input saturation. Neurocomputing, 484, 1–12. https://doi.org/10.1016/j.neucom.2021.03.136
  • Nakos, D. (1990). Ship wave patterns and motions by a three dimensional Rankine panel method [Doctoral dissertation]. Massachusetts Institute of Technology.
  • Park, K., Kim, D., Kim, S., Seo, J., Suh, I., & Rhee, S. (2021). Effect of waterjet intake plane shape on course-keeping stability of a planing boat. International Journal of Naval Architecture and Ocean Engineering, 13, 585–598. https://doi.org/10.1016/j.ijnaoe.2021.06.008
  • Poundra, G., Utama, I., Hardianto, D., & Suwasono, B. (2017). Optimizing trimaran yacht hull configuration based on resistance and seakeeping criteria. Procedia Engineering, 194, 112–119. https://doi.org/10.1016/j.proeng.2017.08.124
  • Royce, R., & Mcdonald, T. (2012). Tri-SWACH Resistance: Comparison of Experimental and Numerical Results. Internal ACCeSS Technical Report, UCL, London, UK. 2012.
  • Song, K. W., Guo, C. Y., Sun, C., Wang, C., Gong, J., Li, P., & Wang, L. Z. (2021). Simulation strategy of the full-scale ship resistance and propulsion performance. Engineering Applications of Computational Fluid Mechanics, 15(1), 1321–1342. https://doi.org/10.1080/19942060.2021.1974091
  • Stern, F., Carrica, P., Kandasamy, M., Gorski, J., O’Dea, J., Hughes, M., Miller, R., Hendrix, D., Kring, D., Milewski, W., Hoffman, R., & Cary, C. (2006). Computational hydrodynamic tools for high-speed sealift. Transactions SNAME, 114, 55–81.
  • Stern, F., Carrica, P., Kandasamy, M., Ooi, S. K., Gorski, J., O’Dea, J., Hughes, M., Miller, R., Hendrix, D., Kring, D., Milewski, W., Hoffman, R., & Cary, C. (2008). Computational hydrodynamic tools for high-speed sealift: Phase II final report. The University of Iowa.
  • Sun, Y., Su, Y. M., Wang, X. X., & Hu, H. Z. (2016). Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system. Engineering Applications of Computational Fluid Mechanics, 10(1), 145–159. https://doi.org/10.1080/19942060.2015.1121838
  • Xia, H., Wang, P., Jin, Z., An, X., & Ding, Y. (2020). Maneuverability analysis of thrust vectoring ducted propeller with deflector. Ocean Engineering, 213, 107614. https://doi.org/10.1016/j.oceaneng.2020.107614
  • Xiang, G., & Soares, C. (2020). Improved dynamical modelling of freely falling underwater cylinder based on cfd. Ocean Engineering, 211, 107538. https://doi.org/10.1016/j.oceaneng.2020.107538
  • Xiang, G., & Soares, C. (2022). A cfd approach for numerical assessment of hydrodynamic coefficients of an inclined prism near the sea bottom. Ocean Engineering, 252, 111140. https://doi.org/10.1016/j.oceaneng.2022.111140
  • Xiang, G., & Xiang, X. (2021). 3d trajectory optimization of the slender body freely falling through water using cuckoo search algorithm. Ocean Engineering, 235, 109354. https://doi.org/10.1016/j.oceaneng.2021.109354
  • Yu, Y., Zhu, R., Xu, D., Huang, S., & Hong, L. (2021). Investigation into the direct calculation of added wave resistance of ship in forward motion with reflection ratio correction. Ocean Engineering, 239, 109857. http://doi.org/10.1016/j.oceaneng.2021.109857
  • Zhai, G. J., Zhou, T., Ma, Z., Ren, N. X., Chen, J. J., & Teh, H. M. (2021). Comparison of impulsive wave forces on a semi-submerged platform deck, with and without columns and considering air compressibility effects, under regular wave actions. Engineering Applications of Computational Fluid Mechanics, 15(1), 1932–1953. https://doi.org/10.1080/19942060.2021.1999858
  • Zhang, W., Moctar, O. E., & Schellin, T. (2020). Numerical simulations of a ship obliquely advancing in calm water and in regular waves. Applied Ocean Research, 103, 102330. https://doi.org/10.1016/j.apor.2020.102330