888
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning models coupled with empirical mode decomposition for simulating monthly and yearly streamflows: a case study of three watersheds in Ontario, Canada

, , , ORCID Icon &
Article: 2242445 | Received 12 May 2023, Accepted 24 Jul 2023, Published online: 21 Aug 2023

References

  • Achite, M., Jehanzaib, M., Elshaboury, N., & Kim, T. W. (2022). Evaluation of machine learning techniques for hydrological drought modeling: A case study of the Wadi Ouahrane Basin in Algeria. Water (Switzerland), 14(3), 431. https://doi.org/10.3390/w14030431
  • Ahmadpour, H., Bazrafshan, O., Rafiei-Sardooi, E., Zamani, H., & Panagopoulos, T. (2021). Gully erosion susceptibility assessment in the Kondoran watershed using machine learning algorithms and the Boruta feature selection. Sustainability, 13(18), 10110. https://doi.org/10.3390/su131810110
  • Bafitlhile, T. M., & Li, Z. (2019). Applicability of ϵ-support vector machine and artificial neural network for flood forecasting in humid, semi-humid and semi-arid basins in China. Water, 11(1), 85. https://doi.org/10.3390/w11010085
  • Bahamonde, P. A., Fuzzen, M. L., Bennett, C. J., Tetreault, G. R., McMaster, M. E., Servos, M. R., Martyniuk, C. J., & Munkittrick, K. R. (2015). Whole organism responses and intersex severity in rainbow darter (Etheostoma caeruleum) following exposures to municipal wastewater in the Grand River basin, ON, Canada. Part A. Aquatic Toxicology, 159, 290–301. https://doi.org/10.1016/j.aquatox.2014.11.023
  • Band, S. S., Heggy, E., Bateni, S. M., Karami, H., Rabiee, M., Samadianfard, S., Chau, K. W., & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, 15(1), 1147–1158. https://doi.org/10.1080/19942060.2021.1944913
  • Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204
  • Bartoletti, N., Casagli, F., Marsili-Libelli, S., Nardi, A., & Palandri, L. (2018). Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system. Environmental Modelling & Software, 106, 35–47. https://doi.org/10.1016/j.envsoft.2017.11.026
  • Barzegar, R., Aalami, M. T., & Adamowski, J. (2021). Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. Journal of Hydrology, 598, 126196. https://doi.org/10.1016/j.jhydrol.2021.126196
  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655
  • Chen, X., Li, F. W., & Feng, P. (2018). A new hybrid model for nonlinear and non-stationary runoff prediction at annual and monthly time scales. Journal of Hydro-Environment Research, 20, 77–92. https://doi.org/10.1016/j.jher.2018.05.004
  • Chollet, F. (2017, January). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 1800–1807). https://doi.org/10.1109/CVPR.2017.195
  • Chu, T. Y., & Huang, W. C. (2020). Application of empirical mode decomposition method to synthesize flow data: A case study of Hushan Reservoir in Taiwan. Water, 12(4), 927. https://doi.org/10.3390/W12040927
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Cui, Z., Qing, X., Chai, H., Yang, S., Zhu, Y., & Wang, F. (2021). Real-time rainfall-runoff prediction using light gradient boosting machine coupled with singular spectrum analysis. Journal of Hydrology, 603, 127124. https://doi.org/10.1016/j.jhydrol.2021.127124
  • Elbeltagi, A., Di Nunno, F., Kushwaha, N. L., de Marinis, G., & Granata, F. (2022). River flow rate prediction in the Des Moines watershed (Iowa, USA): a machine learning approach (Iowa, USA): A machine learning approach. Stochastic Environmental Research and Risk Assessment, 36(11), 3835–3855. https://doi.org/10.1007/s00477-022-02228-9
  • Eslami, E., Salman, A. K., Choi, Y., Sayeed, A., & Lops, Y. (2020). A data ensemble approach for real-time air quality forecasting using extremely randomized trees and deep neural networks. Neural Computing and Applications, 32(11), 7563–7579. https://doi.org/10.1007/s00521-019-04287-6
  • Farhana, N., Firdaus, A., Darmawan, M. F., & Ab Razak, M. F. (2023). Evaluation of Boruta algorithm in DDoS detection. Egyptian Informatics Journal, 24, 27–42. https://doi.org/10.1016/j.eij.2022.10.005
  • Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1
  • Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., & Tao, X. (2021). Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Scientific Reports, 11(1), 17497. https://doi.org/10.1038/s41598-021-96751-4
  • Gizaw, M. S., & Gan, T. Y. (2016). Regional flood frequency analysis using support vector regression under historical and future climate. Journal of Hydrology, 538, 387–398. https://doi.org/10.1016/j.jhydrol.2016.04.041
  • Goliatt, L., Sulaiman, S. O., Khedher, K. M., Farooque, A. A., & Yaseen, Z. M. (2021). Estimation of natural streams longitudinal dispersion coefficient using hybrid evolutionary machine learning model. Engineering Applications of Computational Fluid Mechanics, 15, 1298–1320. https://doi.org/10.1080/19942060.2021.1972043
  • Golshan, M., Kavian, A., Esmali, A., & Ziegler, A. D. (2020). Runoff and sediment yield modeling in data-sparse catchments in the Garehsoo River basin, northern Iran. Environmental Earth Sciences, 79(14), 351. https://doi.org/10.1007/s12665-020-09084-2
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016, December). Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 770–778). https://doi.org/10.1109/CVPR.2016.90.
  • He, X., Luo, J., Zuo, G., & Xie, J. (2019). Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks. Water Resources Management, 33(4), 1571–1590. https://doi.org/10.1007/s11269-019-2183-x
  • Ho, E., Tsuji, L. J. S., & Gough, W. A. (2005). Trends in river-ice break-up data for the western James Bay region of Canada. Polar Geography, 29(4), 291–299. https://doi.org/10.1080/789610144
  • Htike, K. K. (2017). Efficient determination of the number of weak learners in AdaBoost. Journal of Experimental & Theoretical Artificial Intelligence, 29(5), 967–982. https://doi.org/10.1080/0952813X.2016.1266038
  • Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water (Switzerland), 10(11), 1543. https://doi.org/10.3390/w10111543
  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Yen, N., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193
  • Hussain, D., Hussain, T., Khan, A. A., Naqvi, S. A. A., & Jamil, A. (2020). A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin. Earth Science Informatics, 13(3), 915–927. https://doi.org/10.1007/s12145-020-00477-2
  • Idris, A., Khan, A., & Lee, Y. S. (2012). Genetic Programming and Adaboosting based churn prediction for Telecom. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1328–1332. https://doi.org/10.1109/ICSMC.2012.6377917
  • Jamei, M., Ali, M., Karimi, B., Karbasi, M., Farooque, A. A., & Yaseen, Z. M. (2023). Surface water electrical conductivity and bicarbonate ion determination using a smart hybridization of optimal Boruta package with Elman recurrent neural network. Process Safety and Environmental Protection, 174, 115–134. https://doi.org/10.1016/j.psep.2023.03.062
  • Jose, D. M., Vincent, A. M., & Dwarakish, G. S. (2022). Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product. Scientific Reports, 12(1), 1–25. https://doi.org/10.1038/s41598-021-99269-x
  • Kalteh, A. M. (2013). Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers & Geosciences, 54, 1–8. https://doi.org/10.1016/j.cageo.2012.11.015
  • Kamath, P. R., & Senapati, K. (2021). Short-term wind speed forecasting using S-transform with compactly supported kernel. Wind Energy, 24(3), 260–274. https://doi.org/10.1002/we.2571
  • Karthikeyan, L., & Nagesh Kumar, D. (2013). Predictability of nonstationary time series using wavelet and EMD based ARMA models. Journal of Hydrology, 502, 103–119. https://doi.org/10.1016/j.jhydrol.2013.08.030
  • Kolachian, R., & Saghafian, B. (2021). Hydrological drought class early warning using support vector machines and rough sets. Environmental Earth Sciences, 80(11), 390. https://doi.org/10.1007/s12665-021-09536-3
  • Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005–6022. https://doi.org/10.5194/hess-22-6005-2018
  • Krause, P., Smith, A., Veale, B., & Murray, M. (2001). Achievements of the grand river conservation authority, Ontario, Canada. Water Science and Technology, 43(9), 45–55. https://doi.org/10.2166/wst.2001.0506
  • Kumar, P., Prasad, R., Choudhary, A., Gupta, D. K., Mishra, V. N., Vishwakarma, A. K., Singh, A. K., & Srivastava, P. K. (2019). Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto International, 34(9), 1022–1041. https://doi.org/10.1080/10106049.2018.1464601
  • Kursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36), https://doi.org/10.18637/jss.v036.i11
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • Lee, T., & Ouarda, T. B. M. J. (2012). Stochastic simulation of nonstationary oscillation hydroclimatic processes using empirical mode decomposition. Water Resources Research, 48(2), https://doi.org/10.1029/2011WR010660
  • Liu, S., Wang, J., Wang, H., & Wu, Y. (2022). Post-processing of hydrological model simulations using the convolutional neural network and support vector regression. Hydrology Research, 53(4), 605–621. https://doi.org/10.2166/nh.2022.004
  • Liu, S., Xu, J., Zhao, J., Xie, X., & Zhang, W. (2014). Efficiency enhancement of a process-based rainfall-runoff model using a new modified AdaBoost.RT technique. Applied Soft Computing, 23, 521–529. https://doi.org/10.1016/j.asoc.2014.05.033
  • Luo, C., Zhang, X., Wang, Y., Men, Z., & Liu, H. (2022). Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine. Soil and Tillage Research, 219, 105325. https://doi.org/10.1016/j.still.2022.105325
  • Maguire, T., Manuel, L., Smedinga, R. A., & Biehl, M. (2022). A review of feature selection and ranking methods. In R. Smedinga & M. Biehl (Eds.), Proceedings of the 19th SC@RUG 2022 Proceedings 2021–2022 (pp. 15–20). Groningen: Rijksuniversiteit Groningen. https://pure.rug.nl/ws/portalfiles/portal/214074117/proceedings_2022.pdf
  • Mallick, J., Talukdar, S., & Ahmed, M. (2022). Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed, Saudi Arabia. Applied Water Science, 12(4), 77. https://doi.org/10.1007/s13201-022-01599-2
  • Meddage, D. P. P., Ekanayake, I. U., Weerasuriya, A. U., & Lewangamage, C. S. (2021). Tree-based regression models for predicting external wind pressure of a building with an unconventional configuration. In Proceedings of MERCon 2021-7th International Multidisciplinary Moratuwa Engineering Research Conference (pp. 257–262). https://doi.org/10.1109/MERCon52712.2021.9525734
  • Meng, E., Huang, S., Huang, Q., Fang, W., Wu, L., & Wang, L. (2019). A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. Journal of Hydrology, 568, 462–478. https://doi.org/10.1016/j.jhydrol.2018.11.015
  • Metzger, R. A., Doherty, J. F., Jenkins, D. M., & Hall, D. L. (2020). Approximate entropy and empirical mode decomposition for improved speaker recognition. Advances in Data Science and Adaptive Analysis, 12(03n04), 2050011. https://doi.org/10.1142/S2424922X20500114
  • Mohammadi, B. (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6), 98. https://doi.org/10.1007/s40899-021-00584-y
  • Mozaffari, S., Javadi, S., Moghaddam, H. K., & Randhir, T. O. (2022). Forecasting groundwater levels using a hybrid of support vector regression and particle swarm optimization. Water Resources Management, 36(6), 1955–1972. https://doi.org/10.1007/s11269-022-03118-z
  • Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons. B, 4, 51–62. https://doi.org/10.20544/HORIZONS.B.04.1.17.P05
  • Parisouj, P., Mohebzadeh, H., & Lee, T. (2020). Employing machine learning algorithms for streamflow prediction: A case study of four river basins with different climatic zones in the United States. Water Resources Management, 34(13), 4113–4131. https://doi.org/10.1007/s11269-020-02659-5
  • Parisouj, P., Mokari, E., Mohebzadeh, H., Goharnejad, H., Jun, C., Oh, J., & Bateni, S. M. (2022). Physics-informed data-driven model for predicting streamflow: A case study of the Voshmgir Basin, Iran. Applied Sciences, 12(15), 7464. https://doi.org/10.3390/app12157464
  • Pekárová, P., Miklánek, P., & Pekár, J. (2003). Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th-20th centuries. Journal of Hydrology, 274(1-4), 62–79. https://doi.org/10.1016/S0022-1694(02)00397-9
  • Prasad, R., Ali, M., Kwan, P., & Khan, H. (2019). Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Applied Energy, 236, 778–792. https://doi.org/10.1016/j.apenergy.2018.12.034
  • Sadeghi, M., Asanjan, A. A., Faridzad, M., Nguyen, P. H. U., Hsu, K., Sorooshian, S., & Braithwaite, D. A. N. (2019). PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks. Journal of Hydrometeorology, 20(12), 2273–2289. https://doi.org/10.1175/JHM-D-19-0110.1
  • Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. WIRES Data Mining and Knowledge Discovery, 8(4), e1249. https://doi.org/10.1002/widm.1249
  • Sánchez-Martínez, A., Ruíz-Oropeza, E. Y., Orozco-del-Castillo, M. G., Hernández-Gómez, J. J., & Yáñez-Casas, G. A. (2022). Assessment of the reduction of the icesnow coverage at the TransMexican Volcanic Belt through empirical mode decomposition on satellite imagery. In Advances in geospatial data science: Selected papers from the international conference on geospatial information sciences 2021 (pp. 131–148). Springer International Publishing. https://doi.org/10.1007/978-3-030-98096-2_10.
  • Shrestha, N. K., & Shukla, S. (2015). Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agricultural and Forest Meteorology, 200, 172–184. https://doi.org/10.1016/j.agrformet.2014.09.025
  • Sibtain, M., Li, X., Bashir, H., & Azam, M. I. (2021). A hybrid model for runoff prediction using variational mode decomposition and artificial neural network. Water Resources, 48(5), 701–712. https://doi.org/10.1134/S0097807821050171
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. ArXiv Preprint ArXiv, 1409–1556. https://arxiv.org/abs/1409.1556.
  • Singh, U. K., Jamei, M., Karbasi, M., Malik, A., & Pandey, M. (2022). Application of a modern multi-level ensemble approach for the estimation of critical shear stress in cohesive sediment mixture. Journal of Hydrology, 607, 127549. https://doi.org/10.1016/j.jhydrol.2022.127549
  • Soltani, K., Ebtehaj, I., Amiri, A., Azari, A., Gharabaghi, B., & Bonakdari, H. (2021). Mapping the spatial and temporal variability of flood susceptibility using remotely sensed normalized difference vegetation index and the forecasted changes in the future. Science of the Total Environment, 770, 145288. https://doi.org/10.1016/j.scitotenv.2021.145288
  • St. George, S. (2007). Streamflow in the Winnipeg River basin, Canada: Trends, extremes and climate linkages. Journal of Hydrology, 332(3-4), 396–411. https://doi.org/10.1016/j.jhydrol.2006.07.014
  • Story, A., & Buttle, J. M. (2001). Precipitation data quality and long-term water balances within the Moose River Basin, east-central Canada. Atmosphere-Ocean, 39(1), 55–69. https://doi.org/10.1080/07055900.2001.9649666
  • Sudheer, K. P., Gosain, A. K., & Ramasastri, K. S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes, 16(6), 1325–1330. https://doi.org/10.1002/hyp.554
  • Sun, K., Hu, L., Guo, J., Yang, Z., Zhai, Y., & Zhang, S. (2021). Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River. Science of the Total Environment, 768, 145489. https://doi.org/10.1016/j.scitotenv.2021.145489
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-ResNet and the impact of residual connections on learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31, https://doi.org/10.1609/aaai.v31i1.11231
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818–2826). https://doi.org/10.1109/CVPR.2016.308.
  • Tarfaya, C., Houichi, L., & Heddam, S. (2022). Prediction of index rainfall in ungauged regions of Algeria: Survey of rule-based models using geographic predictors. Arabian Journal of Geosciences, 15(7), 668. https://doi.org/10.1007/s12517-022-09944-0
  • Tayyab, M., Ahmad, I., Sun, N., Zhou, J., & Dong, X. (2018). Application of integrated artificial neural networks based on decomposition methods to predict streamflow at Upper Indus Basin, Pakistan. Atmosphere, 9(12), 494. https://doi.org/10.3390/atmos9120494
  • Tu, T., Ishida, K., Ercan, A., Kiyama, M., Amagasaki, M., & Zhao, T. (2021). Hybrid precipitation downscaling over coastal watersheds in Japan using WRF and CNN. Journal of Hydrology: Regional Studies, 37, 100921. https://doi.org/10.1016/j.ejrh.2021.100921
  • Tyralis, H., Papacharalampous, G., & Langousis, A. (2021). Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms. Neural Computing and Applications, 33(8), 3053–3068. https://doi.org/10.1007/s00521-020-05172-3
  • Wang, W.-C., Chau, K.-W., Qiu, L., & Chen, Y.-B. (2015). Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environmental Research, 139, 46–54. https://doi.org/10.1016/j.envres.2015.02.002
  • Weeks, W. D., & Boughton, W. C. (1987). Tests of ARMA model forms for rainfall-runoff modelling. Journal of Hydrology, 91(1-2), 29–47. https://doi.org/10.1016/0022-1694(87)90126-0
  • Williams, G. R. (1961). Cyclical variations in world-wide hydrologic data. Journal of the Hydraulics Division, 87(6), 71–88. https://doi.org/10.1061/JYCEAJ.0000668
  • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1
  • Yuan, R., Cai, S., Liao, W., Lei, X., Zhang, Y., Yin, Z., Ding, G., Wang, J., & Xu, Y. (2021). Daily runoff forecasting using ensemble empirical mode decomposition and long short-term memory. Frontiers in Earth Science, 9, 621780. https://doi.org/10.3389/feart.2021.621780
  • Zhang, C., & Ma, Y. (2012). Ensemble machine learning: Methods and applications. Springer US. https://doi.org/10.1007/978-1-4419-9326-7
  • Zhang, Y., Zhang, C., Sun, J., & Guo, J. (2018). Improved wind speed prediction using empirical mode decomposition. Advances in Electrical and Computer Engineering, 18(2), 3–10. https://doi.org/10.4316/AECE.2018.02001
  • Zhao, Y., Meng, X., Qi, T., Li, Y., Chen, G., Yue, D., & Qing, F. (2022). AI-based rainfall prediction model for debris flows. Engineering Geology, 296, 106456. https://doi.org/10.1016/j.enggeo.2021.106456
  • Zhu, J., & Pierskalla, W. P. (2016). Applying a weighted random forests method to extract karst sinkholes from LiDAR data. Journal of Hydrology, 533, 343–352. https://doi.org/10.1016/j.jhydrol.2015.12.012