1,126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predicting layer thicknesses by numerical simulation for meniscus-guided coating of organic photovoltaics

, , , , &
Article: 2242455 | Received 05 Jun 2023, Accepted 23 Jul 2023, Published online: 02 Aug 2023

References

  • Aeberhard, U., Altazin, S., Stepanova, L., Stous, A., Blülle, B., Kirsch, C. M., Knapp, E., & Ruhstaller, B. (2019). Numerical optimization of organic and hybrid multijunction solar cells. https://doi.org/10.1109/pvsc40753.2019.8980824
  • Armin, A., Li, W., Sandberg, O. J., Xiao, Z., Ding, L., Nelson, J., Neher, D., Vandewal, K., Shoaee, S., Wang, T., Ade, H., Heumueller, T., Brabec, C. J., & Meredith, P. (2021). A history and perspective of non–Fullerene electron acceptors for organic solar cells. Advanced Energy Materials, 11(15), 2003570. https://doi.org/10.1002/aenm.202003570
  • Chen, M., Peng, B., Huang, S., & P. K. L. Chan (2020). Understanding the meniscus–guided coating parameters in organic field–effect–transistor fabrications. Advanced Functional Materials, 30(1), 1905963. https://doi.org/10.1002/adfm.201905963
  • COMSOL Multiphysics® (n.d.). CFD module user's guide. Version 5.4. https://doc.comsol.com/5.4/doc/com.comsol.help.cfd/CFDModuleUsersGuide.pdf
  • De Falco, C., Porro, M., Sacco, R., & Verri, M. (2012). Multiscale modeling and simulation of organic solar cells. Computer Methods in Applied Mechanics and Engineering, 245-246, 102–116. https://doi.org/10.1016/j.cma.2012.06.018
  • Derjaguin, B. (1993). On the thickness of the liquid film adhering to the walls of a vessel after emptying. Progress in Surface Science, 43(1-4), 134–137. https://doi.org/10.1016/0079-6816(93)90022-n
  • Diao, Y., Shaw, L., Bao, Z., & S. C. B. Mannsfeld (2014). Morphology control strategies for solution-processed organic semiconductor thin films. Energy and Environmental Science, 7(7), 2145–2159. https://doi.org/10.1039/c4ee00688g
  • Distler, A., Brabec, C. J., & Egelhaaf, H. (2021). Organic photovoltaic modules with new world record efficiencies. Progress in Photovoltaics, 29(1), 24–31. https://doi.org/10.1002/pip.3336
  • Gu, X., Zhou, Y., Gu, K. L., Kurosawa, T., Guo, Y., Li, Y., Lin, H., Schroeder, B. C., Yan, H., Molina-Lopez, F., Tassone, C. J., Wang, C., Mannsfeld, S. C. B., Yan, H., Zhao, D., Toney, M. F., & Bao, Z. (2017). Roll–to–roll printed large–area all–polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Advanced Energy Materials, 7(14), 1602742. https://doi.org/10.1002/aenm.201602742
  • Hu, Y., Wang, J., Yan, C., & Cheng, P. (2022). The multifaceted potential applications of organic photovoltaics. Nature Reviews Materials, 7(11), 836–838. https://doi.org/10.1038/s41578-022-00497-y
  • Ibrahim, M. L. I., & Hassan, H. H. M. (2019). Influence of active layer thickness on the performance of organic photovoltaics with light trapping. IEEE Transactions on Electron Devices, 66(7), 3124–3128. https://doi.org/10.1109/ted.2019.2917594
  • Iliopoulos, I., & L. E. Scriven (2005). A blade-coating study using a finite-element simulation. Physics of Fluids, 17(12), 127101. https://doi.org/10.1063/1.2140226
  • Landau, L., & Levich, B. (1988). Dragging of a liquid by a moving plate. In Esevier eBooks (pp. 141–153). https://doi.org/10.1016/b978-0-08-092523-3.50016-2
  • Lo Sciuto, G., Capizzi, G., Coco, S., & Shikler, R. (2016). Geometric shape optimization of organic solar cells for efficiency enhancement by neural networks. In Lecture notes in mechanical engineering (pp. 789–796). Springer Nature. https://doi.org/10.1007/978-3-319-45781-9_79
  • Lo Sciuto, G., Coco, S., Gotleyb, D., & Shikler, R. (2020). Finite element numeric simulation of organic solar cells with gold thin film. International Journal on Advanced Science, Engineering and Information Technology, 10(6), 2478. https://doi.org/10.18517/ijaseit.10.6.13782
  • Lu, Z., Wang, C., Deng, W., Achille, M. T., Jie, J., & Zhang, X. (2020). Meniscus-guided coating of organic crystalline thin films for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 8(27), 9133–9146. https://doi.org/10.1039/d0tc01887b
  • Lucera, L., Kubis, P., Fecher, F. W., Bronnbauer, C., Turbiez, M., Forberich, K., Ameri, T., Egelhaaf, H., & Brabec, C. J. (2015). Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules. Energy Technology, 3(4), 373–384. https://doi.org/10.1002/ente.201402192
  • Mann, V., & Rastogi, V. (2020). FDTD simulation studies on improvement of light absorption in organic solar cells by dielectric nanoparticles. Optical and Quantum Electronics, 52(5). https://doi.org/10.1007/s11082-020-02328-2
  • Michels, J. J., Zhang, K., Wucher, P., Beaujuge, P. M., Pisula, W., & Marszalek, T. (2021). Predictive modelling of structure formation in semiconductor films produced by meniscus-guided coating. Nature Materials, 20(1), 68–75. https://doi.org/10.1038/s41563-020-0760-2
  • Nickel, F., Sprau, C., Klein, M. L., Kapetana, P., Christ, N., Liu, X., Klinkhammer, S., Lemmer, U., & Colsmann, A. (2012). Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening. Solar Energy Materials and Solar Cells, 104, 18–22. https://doi.org/10.1016/j.solmat.2012.04.026
  • Park, B., & Han, M. A. (2009). Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating  process. Optics Express, 17(16), 13830. https://doi.org/10.1364/oe.17.013830
  • Ronsin, O., & Harting, J. (2022). Formation of crystalline bulk heterojunctions in organic solar cells: insights from phase-field simulations. ACS Applied Materials & Interfaces, 14(44), 49785–49800. https://doi.org/10.1021/acsami.2c14319
  • Singh, A. R., & Ormiston, S. J. (2022). CFD analysis of blade coating from a reservoir onto a horizontal substrate using a homogeneous two–phase model. Canadian Journal of Chemical Engineering, 100(2), 349–362. https://doi.org/10.1002/cjce.24096
  • Strohm, S., Machui, F., Langner, S., Kubis, P., Gasparini, N., Salvador, M., McCulloch, I., Egelhaaf, H., & Brabec, C. J. (2018). P3HT: Non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy & Environmental Science,, 11(8), 2225–2234. https://doi.org/10.1039/c8ee01150h
  • Zandi, S., & Razaghi, M. (2019). Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Solar Energy, 179, 298–306. https://doi.org/10.1016/j.solener.2018.12.032
  • Zhan, L., Yin, S., Li, Y., Li, S., Chen, T., Sun, R., Min, J., Zhou, G., Zhu, H., Chen, Y., Fang, J., Yang, J., Xia, X., Lu, X., Qiu, H., Fu, W., & Chen, H. S. (2022). Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high–efficiency, thick–film, and large–area organic photovoltaics. Advanced Materials, 34(45), 2206269. https://doi.org/10.1002/adma.202206269
  • Zhang, L., & Wang, X. (2021). Evaporation-driven nanoparticles motion and deposition on a textured surface in the inkjet process. Engineering Applications of Computational Fluid Mechanics, 15(1), 644–655. https://doi.org/10.1080/19942060.2021.1902859
  • Zhu, L., Zhang, M., Xu, J., Li, C., Yan, J., Zhou, G., Zhong, W., Hao, T., Jiali, S., Xue, X., Zhou, Z., Zeng, R., Zhu, H., Chen, C., MacKenzie, R. C. I., Zou, Y., Nelson, J., Zhang, Y., Sun, Y., & Liu, F. (2022). Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 21(6), 656–663. https://doi.org/10.1038/s41563-022-01244-y