1,222
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Monthly rainfall forecasting modelling based on advanced machine learning methods: tropical region as case study

, , , , , , & show all
Article: 2243090 | Received 31 Mar 2023, Accepted 27 Jul 2023, Published online: 10 Aug 2023

References

  • Adham, A., Wesseling, J. G., Abed, R., Riksen, M., Ouessar, M., & Ritsema, C. J. (2019). Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agricultural Water Management, 221, 131–140. https://doi.org/10.1016/j.agwat.2019.05.006
  • AlDahoul, N., Ahmed, A. N., Allawi, M. F., Sherif, M., Sefelnasr, A., Chau, K.-w., & El-Shafie, A. (2022). A comparison of machine learning models for suspended sediment load classification. Engineering Applications of Computational Fluid Mechanics, 16(1), 1211–1232. http://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&page=instructions. https://doi.org/10.1080/19942060.2022.2073565
  • Ali, A., bin Waheed, U., Ashiq, M., AL Asta, M. S., & Khorram, M. (2022). Machine learning model for estimation of local scour depth around cylindrical bridge piers. Iraqi Journal of Civil Engineering, 16, 1–13. https://doi.org/10.37650/ijce.2022.160201
  • Allawi, M. F., & El-Shafie, A. (2016). Utilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoir. Water Resources Management, 30(13), 4773–4788. https://doi.org/10.1007/s11269-016-1452-1
  • Allawi, M. F., Jaafar, O., Mohamad Hamzah, F., Abdullah, S. M. S., & El-shafie, A. (2018). Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. Environmental Science and Pollution Research, 25(14), 13446–13469. https://doi.org/10.1007/s11356-018-1867-8
  • Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences, 7(12), 5383–5396. https://doi.org/10.1007/s12517-013-1174-0
  • Asadi, S., Shahrabi, J., Abbaszadeh, P., & Tabanmehr, S. (2013). A new hybrid artificial neural networks for rainfall-runoff process modeling. Neurocomputing, 121, 470–480. https://doi.org/10.1016/j.neucom.2013.05.023
  • Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation, Singapore, (pp. 4661–4667). https://doi.org/10.1109/CEC.2007.4425083
  • Beheshti, Z., Firouzi, M., Shamsuddin, S. M., Zibarzani, M., & Yusop, Z. (2016). A new rainfall forecasting model using the CAPSO algorithm and an artificial neural network. Neural Computing and Applications, 27(8), 2551–2565. https://doi.org/10.1007/s00521-015-2024-7
  • Bozorg-Haddad, O., Zarezadeh-Mehrizi, M., Abdi-Dehkordi, M., Loáiciga, H. A., & Mariño, M. A. (2016). A self-tuning ANN model for simulation and forecasting of surface flows. Water Resources Management, 30(9), 2907–2929. https://doi.org/10.1007/s11269-016-1301-2
  • Chen, C., Zhang, Q., Kashani, M. H., Jun, C., Bateni, S. M., Band, S. S., Dash, S. S., & Chau, K.-W. (2022). Forecast of rainfall distribution based on fixed sliding window long short-term memory. Engineering Applications of Computational Fluid Mechanics, 16, 248–261. https://doi.org/10.1080/19942060.2021.2009374
  • Choubin, B., Malekian, A., Samadi, S., Khalighi-Sigaroodi, S., & Sajedi-Hosseini, F. (2017). An ensemble forecast of semi-arid rainfall using large-scale climate predictors. Meteorological Applications, 24(3), 376–386. https://doi.org/10.1002/met.1635
  • Choubin, B., Zehtabian, G., Azareh, A., Rafiei-Sardooi, E., Sajedi-Hosseini, F., & Kişi, Ö. (2018). Precipitation forecasting using classification and regression trees (CART) model: A comparative study of different approaches. Environmental Earth Sciences, 77(8). https://doi.org/10.1007/s12665-018-7498-z
  • Cinar, Y. G., Mirisaee, H., Goswami, P., Gaussier, E., & Aït-Bachir, A. (2018). Period-aware content attention RNNs for time series forecasting with missing values. Neurocomputing, 312, 177–186. https://doi.org/10.1016/j.neucom.2018.05.090
  • Coulibaly, P., Haché, M., Fortin, V., & Bobée, B. (2005). Improving daily reservoir inflow forecasts with model combination. Journal of Hydrologic Engineering / American Society of Civil Engineers, Water Resources Engineering Division. https://doi.org/10.1016/(ASCE)1084-0699(2005)10:2(91)
  • Davolio, S., Miglietta, M. M., Diomede, T., Marsigli, C., Morgillo, A., & Moscatello, A. (2008). A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting. Natural Hazards and Earth System Sciences, 8(1), 143–159. https://doi.org/10.5194/nhess-8-143-2008
  • de Oliveira, I. M. S., Schirru, R., & de Medeiros, J. A. C. C. (2009). On the performance of an artificial Bee colony optimization algorithm applied to the accident diagnosis in a PWR nuclear power plant. Int Nucl Atl Conf – Ina 2009.
  • Duong, T. A., & Bui, M. D. (2018). Long short term memory for monthly rainfall prediction in Camau, VIETNAM.
  • French, M. N., Krajewski, W. F., & Cuykendall, R. R. (1992). Rainfall forecasting in space and time using a neural network. Journal of Hydrology, 137(1–4), 1–31. https://doi.org/10.1016/0022-1694(92)90046-X
  • Hamzaçebi, C. (2008). Improving artificial neural networks’ performance in seasonal time series forecasting. Information Sciences, 178(23), 4550–4559. https://doi.org/10.1016/j.ins.2008.07.024
  • Hatem, R. A. A. S. M. U. (2022). Forecasting the water level of the Euphrates river in western Iraq using artificial neural networks (ANN). Int J Des Nat Ecodynamics, 303–309. https://doi.org/10.18280/ijdne.170218
  • Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10, 1543. https://doi.org/10.3390/w10111543
  • Irwanto, M., Gomesh, N., Mamat, M. R., & Yusoff, Y. M. (2014). Assessment of wind power generation potential in Perlis, Malaysia. Renewable and Sustainable Energy Reviews, 38, 296–308. https://doi.org/10.1016/j.rser.2014.05.075
  • kadhim, s., Mansor, K., & Abbood, M. (2022). Prediction of surface quality in electrical discharge machining process for 7024 AL alloy using artificial neural network model. Anbar Journal of Engineering Sciences, 13, 106–113. https://doi.org/10.37649/aengs.2022.176364
  • Kajornrit, J., Wong, K. W., & Fung, C. C. (2012, November 18th–21th). A comparative analysis of soft computing techniques used to estimate missing precipitation records. 19th Biennial Conference of the International Telecommunications Society (ITS): ‘Moving Forward with Future Technologies: Opening a Platform for All’, Bangkok, Thailand
  • Kamel, A. H., Afan, H. A., Sherif, M., Ahmed, A. N., & El-Shafie, A. (2021). RBFNN versus GRNN modeling approach for sub-surface evaporation rate prediction in arid region. Sustainable Computing: Informatics and Systems, 30, 100514. https://doi.org/10.1016/j.suscom.2021.100514
  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Technical Report-TR06, October, 2005). Univ Press Erciyes.
  • Kashiwao, T., Nakayama, K., Ando, S., Ikeda, K., Lee, M., & Bahadori, A. (2017). A neural network-based local rainfall prediction system using meteorological data on the internet: A case study using data from the Japan Meteorological Agency. Applied Soft Computing, 56, 317–330. https://doi.org/10.1016/j.asoc.2017.03.015
  • Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, (vol. 5, pp. 4104–4108). Orlando, FL, USA. https://doi.org/10.1109/ICSMC.1997.637339
  • Kibler, D., & Langley, P. (1988). Machine learning as an experimental science. 81–92.
  • Kisi, O., & Shiri, J. (2011). Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour Manag, 25. https://doi.org/10.1007/s11269-011-9849-3
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual model. Part 1–A discussion of principles. Journal of Hydrology, 10, 282–290.
  • Noori, R., Karbassi, A. R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M. H., Farokhnia, A., & Gousheh, M. G. (2011). Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3-4), 177–189. https://doi.org/10.1016/j.jhydrol.2011.02.021
  • Nozohour-leilabady, B., & Fazelabdolabadi, B. (2016). On the application of artificial bee colony (ABC) algorithm for optimization of well placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO) methodology. Petroleum, 2(1), 79–89. https://doi.org/10.1016/j.petlm.2015.11.004
  • Patel, A., & Joshi, G. (2017). Annual rainfall-runoff modeling of Harnav watershed of a Sabarmati river basin, India using artificial neural network. International Journal of Advance Engineering and Research Development, 4), https://doi.org/10.21090/ijaerd.ncan01
  • Poornima, S., & Pushpalatha, M. (2019). Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units. Atmosphere, 10, 668. https://doi.org/10.3390/atmos10110668
  • Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M., & Nourani, V. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of The Total Environment, 407(17), 4916–4927. https://doi.org/10.1016/j.scitotenv.2009.05.016
  • Ramal, M. M., Jalal, A. D., Sahab, M. F., & Yaseen, Z. M. (2022). River water turbidity removal using new natural coagulant aids: Case study of Euphrates river, Iraq. Water Supply, 22(3), 2721–2737. https://doi.org/10.2166/ws.2021.441
  • Salman, A. G., Heryadi, Y., Abdurahman, E., & Suparta, W. (2018). Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting. Procedia Computer Science.
  • Sharda, R., & Patil, R. B. (1992). Connectionist approach to time series prediction: An empirical test. Journal of Intelligent Manufacturing, 3(5), 317–323. https://doi.org/10.1007/BF01577272
  • Shoaib, M., Shamseldin, A. Y., & Melville, B. W. (2014). Comparative study of different wavelet based neural network models for rainfall-runoff modeling. Journal of Hydrology, 515), https://doi.org/10.1016/j.jhydrol.2014.04.055
  • Shoaib, M., Shamseldin, A. Y., Melville, B. W., & Khan, M. M. (2016). Hybrid wavelet neuro-fuzzy approach for rainfall-runoff modeling. Journal of Computing in Civil Engineering, 30(1), 4014125. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000457
  • Singh, V. K., Panda, K. C., Sagar, A., Al-Ansari, N., Duan, H.-F., Paramaguru, P. K., Vishwakarma, D. K., Kumar, A., Kumar, D., Kashyap, P. S., Singh, R. M., & Elbeltagi, A. (2022). Novel genetic algorithm (GA) based hybrid machine learning-pedotransfer function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity. Engineering Applications of Computational Fluid Mechanics, 16, 1082–1099. https://doi.org/10.1080/19942060.2022.2071994
  • Solgi, A., Nourani, V., & Pourhaghi, A. (2014). Forecasting daily precipitation using hybrid model of wavelet-artificial neural network and comparison with adaptive neurofuzzy inference system (case study: Verayneh station, Nahavand). Advances in Civil Engineering, 2014, 1–12. https://doi.org/10.1155/2014/279368
  • Sulaiman, S. O., Kamel, A. H., Sayl, K. N., & Alfadhel, M. Y. (2019). Water resources management and sustainability over the Western desert of Iraq. Environmental Earth Sciences, 78(16), 495. https://doi.org/10.1007/s12665-019-8510-y
  • Tabari, H., Marofi, S., & Sabziparvar, A. (2010). Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci.
  • Toth, E., Brath, A., & Montanari, A. (2000). Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology, 239(1–4), 132–147. https://doi.org/10.1016/S0022-1694(00)00344-9
  • Uddin, M. J., Li, Y., Tamim, M. Y., Miah, M. B., & Ahmed, S. M. S. (2022). Extreme rainfall indices prediction with atmospheric parameters and ocean–atmospheric teleconnections using a random forest model. J Appl Meteorol Climatol, 61, 651–667. https://doi.org/10.1175/JAMC-D-21-0170.1
  • Venkata Ramana, R., Krishna, B., Kumar, S. R., & Pandey, N. G. (2013). Monthly rainfall prediction using wavelet neural network analysis. Water Resources Management, 27(10), 3697–3711. https://doi.org/10.1007/s11269-013-0374-4
  • Wang, G. C., Zhang, Q., Band, S. S., Dehghani, M., Chau, K. w., Tho, Q. T., Zhu, S., Samadianfard, S., & Mosavi, A. (2022). Monthly and seasonal hydrological drought forecasting using multiple extreme learning machine models. Engineering Applications of Computational Fluid Mechanics, 16, 1364–1381. https://doi.org/10.1080/19942060.2022.2089732
  • Wang, K., Band, S. S., Ameri, R., Biyari, M., Hai, T., Hsu, C.-C., Hadjouni, M., Elmannai, H., Chau, K.-W., & Mosavi, A. (2022). Performance improvement of machine learning models via wavelet theory in estimating monthly river streamflow. Engineering Applications of Computational Fluid Mechanics, 16, 1833–1848. https://doi.org/10.1080/19942060.2022.2119281
  • Whigham, P. A., & Crapper, P. F. (2001). Modelling rainfall-runoff using genetic programming. Mathematical and Computer Modelling, 33(6–7), 707–721. https://doi.org/10.1016/S0895-7177(00)00274-0
  • Wu, J. S., Han, J., Annambhotla, S., & Bryant, S. (2005). Artificial neural networks for forecasting watershed runoff and stream flows. Journal of Hydrologic Engineering, 10(3), 216–222. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:3(216)
  • Wu, W., Dandy, G. C., & Maier, H. R. (2014). Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling & Software, 54. https://doi.org/10.1016/j.envsoft.2013.12.016
  • Wu, Y., Tan, H., Qin, L., Ran, B., & Jiang, Z. (2018). A hybrid deep learning based traffic flow prediction method and its understanding. Transportation Research Part C: Emerging Technologies, 90, 166–180. https://doi.org/10.1016/j.trc.2018.03.001
  • Yaseen, Z. M., El-shafie, A., Jaafar, O., Afan, H. A., & Sayl, K. N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038
  • Zainal, A. R., Glover, I. A., & Watson, P. A. (2002). Rain rate and drop size distribution measurements in Malaysia. In Proceedings of IGARSS ‘93 – IEEE International Geoscience and Remote Sensing Symposium (vol. 1, pp. 309–311). Tokyo, Japan: IEEE. https://doi.org/10.1109/IGARSS.1993.322560
  • Zaw, W., & Naing, T. (2008). Empirical statistical modeling of rainfall prediction over Myanmar. World Academy of Science, Engineering and Technology, 2(10), 500–504.
  • Zin, W. Z. W., Jemain, A. A., & Ibrahim, K. (2013). Analysis of drought condition and risk in peninsular Malaysia using standardised precipitation index. Theoretical and Applied Climatology, 111(3-4), 559–568. https://doi.org/10.1007/s00704-012-0682-2