1,676
Views
1
CrossRef citations to date
0
Altmetric
Research Article

CFD study of droplet formation in a cross-Junction microfluidic device: investigating the impact of outflow channel design and viscosity ratio

&
Article: 2243091 | Received 20 Mar 2023, Accepted 20 Jul 2023, Published online: 04 Aug 2023

References

  • Agarwal, P., Choi, J., Huang, H., Zhao, S., Dumbleton, J., Li, J., & He, X. (2015). A biomimetic core–shell platform for miniaturized 3D cell and tissue engineering. Particle & Particle Systems Characterization, 32, 809–816. https://doi.org/10.1002/ppsc.201500025
  • Anandan, P., Gagliano, S., & Bucolo, M. (2015). Computational models in microfluidic bubble logic. Microfluidics and Nanofluidics, 18, 305–321. https://doi.org/10.1007/s10404-014-1434-7
  • Bedram, A., Darabi, A., Moosavi, A., & Hannani, S. (2015). Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sized droplets in micro-and nano-fluidic systems. Journal of Fluids Engineering, 137, 031202. https://doi.org/10.1115/1.4028499
  • Besanjideh, M., Rezaeian, M., Mahmoudi, Z., Shamloo, A., & Hannani, S. (2022). Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation. Materials Today Chemistry, 24, 100821. https://doi.org/10.1016/j.mtchem.2022.100821
  • Cahn, J., & Hilliard, J. (1959). Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. The Journal of Chemical Physics, 31, 688–699. https://doi.org/10.1063/1.1730447
  • Chekifi, T. (2018). Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Measurement and Instrumentation, 59, 118–125. https://doi.org/10.1016/j.flowmeasinst.2017.11.013
  • Chen, X., & Ren, C. (2017). Experimental study on droplet generation in flow focusing devices considering a stratified flow with viscosity contrast. Chemical Engineering Science, 163, 1–10. https://doi.org/10.1016/j.ces.2017.01.029
  • Christopher, G., & Anna, S. (2007). Microfluidic methods for generating continuous droplet streams. Journal Of Physics D: Applied Physics, 40, R319. https://doi.org/10.1088/0022-3727/40/19/R01
  • Cubaud, T., Jose, B., Darvishi, S., & Sun, R. (2012). Droplet breakup and viscosity-stratified flows in microchannels. International Journal of Multiphase Flow, 39, 29–36. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.011
  • Cubaud, T., & Mason, T. (2008). Capillary threads and viscous droplets in square microchannels. Physics of Fluids, 20, 053302. https://doi.org/10.1063/1.2911716
  • Eggers, J. (1997). Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, 69, 865. https://doi.org/10.1103/RevModPhys.69.865
  • Garstecki, P., Fuerstman, M., Stone, H., & Whitesides, G. (2006). Formation of droplets and bubbles in a microfluidic T-junction–scaling and mechanism of break-up. Lab on A Chip, 6, 437–446. https://doi.org/10.1039/b510841a
  • Ghazimirsaeed, E., Madadelahi, M., Dizani, M., & Shamloo, A. (2021). Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections. Langmuir, 37, 5118–5130. https://doi.org/10.1021/acs.langmuir.0c03662
  • Glawdel, T., Elbuken, C., & Ren, C. (2011). Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab on A Chip, 11, 3774–3784. https://doi.org/10.1039/c1lc20628a
  • Husny, J., & Cooper-White, J. (2006). The effect of elasticity on drop creation in T-shaped microchannels. Journal of Non-newtonian Fluid Mechanics, 137, 121–136. https://doi.org/10.1016/j.jnnfm.2006.03.007
  • Jacqmin, D. (1999). Calculation of two-phase Navier–Stokes flows using phase-field modeling. Journal of Computational Physics, 155, 96–127. https://doi.org/10.1006/jcph.1999.6332
  • Jafari, R., & Okutucu-Özyurt, T. (2016). Numerical simulation of flow boiling from an artificial cavity in a microchannel. International Journal of Heat And Mass Transfer, 97, 270–278. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.028
  • Jena, S., Bahga, S., & Kondaraju, S. (2021). Prediction of droplet sizes in a T-junction microchannel: effect of dispersed phase inertial forces. Physics of Fluids, 33, 032120. https://doi.org/10.1063/5.0039913
  • Kim, E., & Whitesides, G. (1997). Imbibition and flow of wetting liquids in noncircular capillaries. The Journal of Physical Chemistry B, 101, 855–863. https://doi.org/10.1021/jp961594o
  • Liu, C., & Shen, J. (2003). A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D: Nonlinear Phenomena, 179, 211–228. https://doi.org/10.1016/S0167-2789(03)00030-7
  • Ma, Q., Zheng, Z., Fan, J., Jia, J., Bi, J., Hu, P., Wang, Q., Li, M., Wei, W., & Wang, D. (2021). Pore-scale simulations of CO2/oil flow behavior in heterogeneous porous media under various conditions. Energies, 14, 533. https://doi.org/10.3390/en14030533
  • Man, P., Mastrangelo, C., Burns, M., & Burke, D. (1998). Microfabricated capillarity-driven stop valve and sample injector. In Proceedings MEMS 98. IEEE. Eleventh annual international workshop on micro electro mechanical systems. An investigation of micro structures, sensors, actuators, machines and systems (Cat. No. 98CH36176) (pp. 45–50). IEEE.
  • Mark, D., Haeberle, S., Roth, G., Stetten, F., & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Microfluidics Based Microsystems, 305–376. https://doi.org/10.1007/978-90-481-9029-4
  • Mashhadian, A., & Shamloo, A. (2019). Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel. Analytica Chimica Acta, 1083, 137–149. https://doi.org/10.1016/j.aca.2019.06.057
  • Moreira, A., Campos, J., & Miranda, J. (2022). Characterization of gelatin microparticle production in a flow focusing microfluidic system. Colloids And Surfaces A: Physicochemical And Engineering Aspects, 647, 129079. https://doi.org/10.1016/j.colsurfa.2022.129079
  • Naghdloo, A., Ghazimirsaeed, E., & Shamloo, A. (2019). Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection. Sensors And Actuators B: Chemical, 283, 831–841. https://doi.org/10.1016/j.snb.2018.12.084
  • Nasiri, R., Shamloo, A., & Akbari, J. (2021). Design of a hybrid inertial and magnetophoretic microfluidic device for CTCs separation from blood. Micromachines, 12, 877. https://doi.org/10.3390/mi12080877
  • Nekouei, M., & Vanapalli, S. (2017). Volume-of-fluid simulations in microfluidic T-junction devices: influence of viscosity ratio on droplet size. Physics of Fluids, 29, 032007. https://doi.org/10.1063/1.4978801
  • Shamloo, A., Madadelahi, M., & Akbari, A. (2016). Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters. Chemical Engineering and Processing: Process Intensification, 104, 243–252. https://doi.org/10.1016/j.cep.2016.03.017
  • Shamloo, A., Yazdani, A., & Saghafifar, F. (2020). Investigation of a two-step device implementing magnetophoresis and dielectrophoresis for separation of circulating tumor cells from blood cells. Engineering in Life Sciences, 20, 296–304. https://doi.org/10.1002/elsc.v20.7
  • Shi, R. (2023). Numerical simulation of inertial microfluidics: a review. Engineering Applications Of Computational Fluid Mechanics, 17, 2177350. https://doi.org/10.1080/19942060.2023.2177350
  • Squires, T., & Quake, S. (2005). Microfluidics: fluid physics at the nanoliter scale. Reviews of Modern Physics, 77, 977. https://doi.org/10.1103/RevModPhys.77.977
  • Stone, H. (2005). On lubrication flows in geometries with zero local curvature. Chemical Engineering Science, 60, 4838–4845. https://doi.org/10.1016/j.ces.2005.03.021
  • Sugiura, S., Nakajima, M., & Seki, M. (2002). Effect of channel structure on microchannel emulsification. Langmuir, 18, 5708–5712. https://doi.org/10.1021/la025813a
  • Tan, Y., Cristini, V., & Lee, A. (2006). Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors And Actuators B: Chemical, 114, 350–356. https://doi.org/10.1016/j.snb.2005.06.008
  • Thorsen, T., Roberts, R., Arnold, F., & Quake, S. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 86, 4163. https://doi.org/10.1103/PhysRevLett.86.4163
  • Wang, F., & Burns, M. (2009). Performance of nanoliter-sized droplet-based microfluidic PCR. Biomedical Microdevices, 11, 1071–1080. https://doi.org/10.1007/s10544-009-9324-6
  • Wu, L., Tsutahara, M., Kim, L., & Ha, M. (2008). Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel. International Journal Of Multiphase Flow, 34, 852–864. https://doi.org/10.1016/j.ijmultiphaseflow.2008.02.009
  • Xu, Q., & Nakajima, M. (2004). The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Applied Physics Letters, 85, 3726–3728. https://doi.org/10.1063/1.1812380
  • Zhao, C. (2013). Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews, 65, 1420–1446. https://doi.org/10.1016/j.addr.2013.05.009
  • Zheng, B., Roach, L., & Ismagilov, R. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal Of The American Chemical Society, 125, 11170–11171. https://doi.org/10.1021/ja037166v
  • Zhu, P., & Wang, L. (2017). Passive and active droplet generation with microfluidics: a review. Lab on A Chip, 17, 34–75. https://doi.org/10.1039/C6LC01018K