777
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigate the full characteristic of a centrifugal pump-as-turbine (PAT) in turbine and reverse pump modes

, , , , , & show all
Article: 2246527 | Received 23 Apr 2023, Accepted 04 Aug 2023, Published online: 18 Aug 2023

References

  • Amblard, H., Borciani, G., Guiton, P., Henry, P., Martin, G., & Thalmann, R. (1985). Comportement des turbines francis et des pompes-turbines à débit partiel. La Houille Blanche, 71(5), 435–440. https://doi.org/10.1051/lhb/1985031
  • Amiri, K., Mulu, B., Cervantes, M. J., & Raisee, M. (2016). Effects of load variation on a Kaplan turbine runner. International Journal of Fluid Machinery and Systems, 9(2), 182–193. https://doi.org/10.5293/IJFMS.2016.9.2.182
  • Bazilian, M., Nussbaumer, P., Rogner, H. H., Brew-Hammond, A., Foster, V., Pachauri, S., Williams, E., Howells, M., Niyongabo, P., Musaba, L., Gallachóir, B. Ó., Radka, M., & Kammen, D. M. (2012). Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. In Utilities policy (Vol. 20, Issue 1, pp. 1–16). Elsevier Ltd. https://doi.org/10.1016/j.jup.2011.11.002
  • Botero, F., Hasmatuchi, V., Roth, S., & Farhat, M. (2014). Non-intrusive detection of rotating stall in pump-turbines. Mechanical Systems and Signal Processing, 48(1–2), 162–173. https://doi.org/10.1016/j.ymssp.2014.03.007
  • Boussinesq, J. (1877). “Essai sur la théorie des eaux courantes”, Mémoires présentés par divers savants à l'Académie des Sciences 23 (1): 1–680.
  • Derakhshan, S., & Nourbakhsh, A. (2008). Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Experimental Thermal and Fluid Science, 32(8), 1620–1627. https://doi.org/10.1016/j.expthermflusci.2008.05.004
  • Favrel, A., Gomes Pereira Junior, J., Landry, C., Müller, A., Nicolet, C., & Avellan, F. (2018). New insight in Francis turbine cavitation vortex rope: Role of the runner outlet flow swirl number. Journal of Hydraulic Research, 56(3), 367–379. https://doi.org/10.1080/00221686.2017.1356758
  • Fecarotta, O., Carravetta, A., Ramos, H. M., & Martino, R. (2016). An improved affinity model to enhance variable operating strategy for pumps used as turbines. Journal of Hydraulic Research, 54(3), 332–341. https://doi.org/10.1080/00221686.2016.1141804
  • Hasmatuchi, V., Farhat, M., Roth, S., Botero, F., & Avellan, F. (2011). Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode. Journal of Fluids Engineering, Transactions of the ASME, 133(5), https://doi.org/10.1115/1.4004088
  • Hu, J. H., Yang, J. D., & Zeng, W. (2018). Steady and transient performance of a pump-turbine on an open-loop test rig: Pump mode. IOP Conference Series: Earth and Environmental Science, 163(1), https://doi.org/10.1088/1755-1315/163/1/012082
  • Hu, J. H., Yang, J. D., & Zeng, W. (2019). Steady and transient performance of a model pump-turbine at off-design conditions: Turbine mode. IOP Conference Series: Earth and Environmental Science, 240(7), https://doi.org/10.1088/1755-1315/240/7/072029
  • Huang, S., Qiu, G., Su, X., Chen, J., & Zou, W. (2017). Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle. Renewable Energy, 108, 64–71. https://doi.org/10.1016/j.renene.2017.02.045
  • Herwig, H., & Kock, F. (2006). Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 43(3), 207–215. https://doi.org/10.1007/s00231-006-0086-x
  • Jacquet, C., Fortes-Patella, R., Balarac, L., & Houdeline, J. B. (2016). CFD investigation of complex phenomena in S-shape region of reversible pump-turbine. IOP Conference Series: Earth and Environmental Science, 49(4), https://doi.org/10.1088/1755-1315/49/4/042010
  • Jain, S. V., Swarnkar, A., Motwani, K. H., & Patel, R. N. (2015). Effects of impeller diameter and rotational speed on performance of pump running in turbine mode. Energy Conversion and Management, 89, 808–824. https://doi.org/10.1016/j.enconman.2014.10.036
  • Kim, S. J., Suh, J. W., Choi, Y. S., Park, J., Park, N. H., & Kim, J. H. (2019). Inter-blade vortex and vortex rope characteristics of a pump-turbine in turbine mode under low flow rate conditions. Water (Switzerland), 11(12), https://doi.org/10.3390/w11122554
  • Lenarcic, M., & Gehrer, A. (2019). A theoretical, numerical and experimental analysis of S-shape instabilities in reversible pump-turbines: Resultant strategies for improving operational stability. IOP Conference Series: Earth and Environmental Science, 240(3), https://doi.org/10.1088/1755-1315/240/3/032023
  • Li, P., Xiao, R., & Tao, R. (2022). Study of vortex rope based on flow energy dissipation and vortex identification. Renewable Energy, 198, 1065–1081. https://doi.org/10.1016/j.renene.2022.08.078
  • Liu, K. H., Zhang, Y. N., Li, J. W., & Xian, H. Z. (2016). Quantitative analysis of backflow of reversible pump-turbine in generating mode. IOP Conference Series: Materials Science and Engineering, 129(1), https://doi.org/10.1088/1757-899X/129/1/012027
  • Liu, M., Tan, L., & Cao, S. (2019). Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine. Energy, 172, 712–732. https://doi.org/10.1016/j.energy.2019.01.162
  • Liu, Y., Wang, D., & Ran, H. (2021). Computational research on the formation mechanism of double humps in pump–turbines. Engineering Applications of Computational Fluid Mechanics, 15(1), 1542–1562. https://doi.org/10.1080/19942060.2021.1977711
  • Lu, J., Qian, Z., & Lee, Y. H. (2021). Numerical investigation of unsteady characteristics of a pump turbine under runaway condition. Renewable Energy, 169, 905–924. https://doi.org/10.1016/j.renene.2021.01.063
  • Menter, F. R. (1992). Improved two-equation k-turbulence models for aerodynamic flows.
  • Nautiyal, H., Varun, G., & Kumar, A. (2010). Reverse running pumps analytical, experimental and computational study: A review. Renewable and Sustainable Energy Reviews, 14(7), 2059–2067. https://doi.org/10.1016/j.rser.2010.04.006
  • Orchard, B., & Klos, S. (2009). Pumps as turbines for water industry. World Pumps, 2009(8), 22–23. https://doi.org/10.1016/S0262-1762(09)70283-4
  • Paish, O. (2002). Small hydro power: Technology and current status. In Renewable and sustainable energy reviews (Vol. 6). www.elsevier.com/locate/rser.
  • Raman, N., Hussein, I., Palanisamy, K., & Foo, B. (2013). An experimental investigation of pump as turbine for micro hydro application. IOP Conference Series: Earth and Environmental Science, 16(1), https://doi.org/10.1088/1755-1315/16/1/012064
  • Sinagra, M., Sammartano, V., Morreale, G., & Tucciarelli, T. (2017). A new device for pressure control and energy recovery in water distribution networks. Water (Switzerland), 9(5), https://doi.org/10.3390/w9050309
  • Staubli, T., Widmer, C., Tresch, T., & Sallaberger, M. (2010). Starting pump-turbines with unstable characteristics real-time suspended sediment monitoring at hydropower plants view project Discharge measurements at La rance tidal power plant using current meters method view project starting pump-turbines with unstable characteristics. https://www.researchgate.net/publication/291153061
  • Varun, G., Prakash, R., & Bhat, I. K. (2009). Energy, economics and environmental impacts of renewable energy systems. Renewable and sustainable energy reviews, 13(9), 2716–2721. https://doi.org/10.1016/j.rser.2009.05.007
  • Walseth, E. C., Nielsen, T. K., & Svingen, B. (2016). Measuring the dynamic characteristics of a Low specific speed pump—turbine model. Energies, 9(3), 199. https://doi.org/10.3390/en9030199
  • Widmer, C., Staubli, T., & Ledergerber, N. (2011). Unstable characteristics and rotating stall in turbine brake operation of pump-turbines. Journal of Fluids Engineering, Transactions of the ASME, 133(4), 41101-1–41101-41109. https://doi.org/10.1115/1.4003874
  • Williams, A. A. (1996). WREX 1996 pumps as turbines for low cost micro hydro power.
  • Xia, L., Cheng, Y., You, J., Zhang, X., Yang, J., & Qian, Z. (2017). Mechanism of the s-shaped characteristics and the runaway instability of pump-turbines. Journal of Fluids Engineering, Transactions of the ASME, 139(3), https://doi.org/10.1115/1.4035026
  • Zeng, W., Yang, J., & Hu, J. (2017). Pumped storage system model and experimental investigations on S-induced issues during transients. Mechanical Systems and Signal Processing, 90, 350–364. https://doi.org/10.1016/j.ymssp.2016.12.031
  • Zhang, W., Chen, Z., Zhu, B., & Zhang, F. (2020). Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine. Renewable Energy, 154, 826–840. https://doi.org/10.1016/j.renene.2020.03.069
  • Zhang, X. Y., Jiang, C. X., Lv, S., Wang, X., Yu, T., Jian, J., Shuai, Z. J., & Li, W. Y. (2021). Clocking effect of outlet RGVs on hydrodynamic characteristics in a centrifugal pump with an inlet inducer by CFD method. Engineering Applications of Computational Fluid Mechanics, 15(1), 222–235. https://doi.org/10.1080/19942060.2021.1871961
  • Zhang, Y., & Wu, Y. (2017). A review of rotating stall in reversible pump turbine. In Proceedings of the institution of mechanical engineers, part C: Journal of mechanical engineering science (Vol. 231, Issue 7, pp. 1181–1204). SAGE Publications Ltd. https://doi.org/10.1177/0954406216640579
  • Zuo, Z., Fan, H., Liu, S., & Wu, Y. (2016). S-shaped characteristics on the performance curves of pump-turbines in turbine mode – a review. In Renewable and sustainable energy reviews (Vol. 60, pp. 836–851). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.312