571
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical and experiment study on ventilation performance of the equipment compartment of Alpine high-speed train

, , , , , , & show all
Article: 2252514 | Received 21 Jun 2023, Accepted 19 Aug 2023, Published online: 31 Aug 2023

References

  • Asadi, M., & Arezi, B. (2011). Thermal design, modeling and simulation of air forced cooling heat sink for Thyristor Controlled Reactor (TCR). 2011 2nd Power Electronics. Drive Systems and Technologies Conference (pp. 625–631). https://doi.org/10.1109/PEDSTC.2011.5742495
  • Bai, G., & Gong, G. (2012). The study of indoor air quality in train compartment. 2012 Third International Conference on Digital Manufacturing & Automation (pp. 948–951). https://doi.org/10.1109/ICDMA.2012.224
  • Barone, G., Buonomano, A., Forzano, C., & Palombo, A. (2020). Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses. Energy, 204, 117833. https://doi.org/10.1016/j.energy.2020.117833
  • Benjamin, S. F., & Roberts, C. A. (2002). Measuring flow velocity at elevated temperature with a hot wire anemometer calibrated in cold flow. International Journal of Heat and Mass Transfer, 45(4), 703–706. https://doi.org/10.1016/S0017-9310(01)00194-6
  • Caré, I., Bonthoux, F., & Fontaine, J.-R. (2014). Measurement of air flow in duct by velocity measurements. EPJ Web of Conferences, 77, 00010. https://doi.org/10.1051/epjconf/20147700010
  • Cheng, F., Xiong, X.-H., Tang, M.-Z., Li, X.-B., & Wang, X.-R. (2022). Impact of the gap distance between two adjacent external windshields of a high-speed train on surrounding flow characteristics: An IDDES study. Engineering Applications of Computational Fluid Mechanics, 16(1), 724–745. https://doi.org/10.1080/19942060.2022.2046168
  • Cheng, N.-S., Hao, Z., & Tan, S. K. (2008). Comparison of quadratic and power law for nonlinear flow through porous media. Experimental Thermal and Fluid Science, 32(8), 1538–1547. https://doi.org/10.1016/j.expthermflusci.2008.04.007
  • Comte-Bellot, G. (1976). Hot-wire anemometry. Annual Review of Fluid Mechanics, 8(1), 209–231. https://doi.org/10.1146/annurev.fl.08.010176.001233
  • Dong, T., Minelli, G., Wang, J., Liang, X., & Krajnović, S. (2022). Numerical investigation of a high-speed train underbody flows: Studying flow structures through large-eddy simulation and assessment of steady and unsteady Reynolds-averaged Navier–Stokes and improved delayed detached eddy simulation performance. Physics of Fluids, 34(1), 015126. https://doi.org/10.1063/5.0075617
  • Feng, L., Wen, Y., Zhang, D., & Liu, D. (2022). Research on the optimization of shielding of the equipment compartment under the high-speed train. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), 224–227. https://doi.org/10.1109/ICETCI55101.2022.9832295
  • Ferranti, E., Chapman, L., Lowe, C., McCulloch, S., Jaroszweski, D., & Quinn, A. (2016). Heat-Related failures on southeast England’s railway network: Insights and implications for heat risk management. Weather, Climate, and Society, 8(2), 177–191. https://doi.org/10.1175/WCAS-D-15-0068.1
  • Foster, A., & Kinzel, M. (2021). Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models. Physics of Fluids, 33(2), 021904. https://doi.org/10.1063/5.0040755
  • Georgiou, D. P., & Milidonis, K. F. (2014). Fabrication and calibration of a sub-miniature 5-hole probe with embedded pressure sensors for use in extremely confined and complex flow areas in turbomachinery research facilities. Flow Measurement and Instrumentation, 39, 54–63. https://doi.org/10.1016/j.flowmeasinst.2014.07.005
  • Hu, J., Xuan, H. B., Kwok, K. C. S., Zhang, Y., & Yu, Y. (2018). Study of wind flow over a 6 m cube using improved delayed detached Eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 179, 463–474. https://doi.org/10.1016/j.jweia.2018.07.003
  • Jia, Q., Xia, C., Zang, J., Pan, D., Xu, J., & Gao, N. (2016). Numerical simulation on the temperature field in an equipment cabin of a high-speed railway train. Building Simulation, 9(6), 689–700. https://doi.org/10.1007/s12273-016-0298-z
  • Jia, Q., Zang, J., Pan, D., Xia, C., Xu, J., & Gao, N. (2015). Analysis of high speed train equipment cabin temperature field based on numerical simulation. Procedia Engineering, 121, 1954–1961. https://doi.org/10.1016/j.proeng.2015.09.187
  • Jiang, Y., Alexander, D., Jenkins, H., Arthur, R., & Chen, Q. (2003). Natural ventilation in buildings: Measurement in a wind tunnel and numerical simulation with large-eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 91(3), 331–353. https://doi.org/10.1016/S0167-6105(02)00380-X
  • Kaltenbach, H., Alonso, I., & Schober, M. (2008). A generic train-underfloor experiment for CFD validation. BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications, 20–24.
  • Kang, W., Trang, N. D., Lee, S. H., Choi, H. M., Shim, J. S., Jang, H. S., & Choi, Y. M. (2015). Experimental and numerical investigations of the factors affecting the S-type Pitot tube coefficients. Flow Measurement and Instrumentation, 44, 11–18. https://doi.org/10.1016/j.flowmeasinst.2014.11.006
  • Kotelnikov, A. L., Bazhenova, T. V., Bivol, G. Y., & Lenkevich, D. A. (2017). Impact on blockage of an airflow containing solid particles. High Temperature, 55(1), 162–164. https://doi.org/10.1134/S0018151X17010138
  • Li, H. (2020). The study of thermal environment during the movement of Air-conditioned train. IOP Conference Series: Materials Science and Engineering, 735(1), 0012080. https://doi.org/10.1088/1757-899X/735/1/012080
  • Li, X., Wu, F., Tao, Y., Yang, M., Newman, R., & Vainchtein, D. (2019). Numerical study of the air flow through an air-conditioning unit on high-speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 187, 26–35. https://doi.org/10.1016/j.jweia.2019.01.015
  • Li, Y. N., & Wang, Y. (2015). Study on control model of Air-conditioning system of Air-conditioned train in qinghai-Tibet railway. Applied Mechanics and Materials, 713–715, 905–908. https://doi.org/10.4028/www.scientific.net/AMM.713-715.905
  • Liang, X.-F., Chen, G., Li, X.-B., & Zhou, D. (2020). Numerical simulation of pressure transients caused by high-speed train passage through a railway station. Building and Environment, 184, 107228. https://doi.org/10.1016/j.buildenv.2020.107228
  • Liu, H., Zhang, S., Liang, X., & Zou, Y. (2022). The effect of covering structure in pantograph sinking platform on the aerodynamics of high- speed train. Engineering Applications of Computational Fluid Mechanics, 16(1), 2157–2175. https://doi.org/10.1080/19942060.2022.2133517
  • Liu, W., Deng, Q., Huang, W., & Liu, R. (2011). Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage. Applied Thermal Engineering, 31(6-7), 1150–1162. https://doi.org/10.1016/j.applthermaleng.2010.12.010
  • López González, L., Galdo Vega, M., Fernández Oro, J. M., & Blanco Marigorta, E. (2014). Numerical modeling of the piston effect in longitudinal ventilation systems for subway tunnels. Tunnelling and Underground Space Technology, 40, 22–37. https://doi.org/10.1016/j.tust.2013.09.008
  • Maier, J., Marggraf-Micheel, C., Dehne, T., & Bosbach, J. (2017). Thermal comfort of different displacement ventilation systems in an aircraft passenger cabin. Building and Environment, 111, 256–264. https://doi.org/10.1016/j.buildenv.2016.11.017
  • Pan, A.-X., Gong, Y., & Yang, Z.-G. (2021). Failure analysis on abnormal leakage of radiator for high-speed train transformer. Engineering Failure Analysis, 129, 105673. https://doi.org/10.1016/j.engfailanal.2021.105673
  • Paradot, N., Talotte, C., Garem, H., Delville, J., & Bonnet, J.-P. (2009). A comparison of the numerical simulation and experimental investigation of the flow around a high speed train. ASME 2002 Joint U.S.-European Fluids Engineering Division Conference (pp. 1055–1060). https://doi.org/10.1115/FEDSM2002-31430
  • Schmeling, D., & Bosbach, J. (2017). On the influence of sensible heat release on displacement ventilation in a train compartment. Building and Environment, 125, 248–260. https://doi.org/10.1016/j.buildenv.2017.08.039
  • Shen, J., Qin, X., & Wang, Y. (2018). High-speed permanent magnet electrical machines — applications, key issues and challenges. CES Transactions on Electrical Machines and Systems, 2(1), 23–33. https://doi.org/10.23919/TEMS.2018.8326449
  • Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  • Soper, D., Flynn, D., Baker, C., Jackson, A., & Hemida, H. (2018). A comparative study of methods to simulate aerodynamic flow beneath a high-speed train. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(5), 1464–1482. https://doi.org/10.1177/0954409717734090
  • Suzuki, M., Ido, A., Sakuma, Y., & Kajiyama, H. (2008). Full-Scale measurement and numerical simulation of flow around high-speed train in tunnel. Journal of Mechanical Systems for Transportation and Logistics, 1(3), 281–292. https://doi.org/10.1299/jmtl.1.281
  • Tanghong, L., & Gang, X. (2010). Test and improvement of ventilation cooling system for high-speed train. 2010 International Conference on Optoelectronics and Image Processing (Vol. 2, pp. 493–497). https://doi.org/10.1109/ICOIP.2010.55.
  • Valger, S. (2022). Estimation of pollutant dispersion around a building within non-isothermal boundary-layer using detached eddy simulation. Thermal Science, 26(2 Part C), 2013–2025. https://doi.org/10.2298/TSCI211123046V
  • Wang, H., Lin, M., & Chen, Y. (2014). Performance evaluation of air distribution systems in three different China railway high-speed train cabins using numerical simulation. Building Simulation, 7(6), 629–638. https://doi.org/10.1007/s12273-014-0168-5
  • Wang, J., Minelli, G., Dong, T., Chen, G., & Krajnović, S. (2019). The effect of bogie fairings on the slipstream and wake flow of a high-speed train. An IDDES study. Journal of Wind Engineering and Industrial Aerodynamics, 191, 183–202. https://doi.org/10.1016/j.jweia.2019.06.010
  • Wang, J., Minelli, G., Miao, X., Zhang, J., Wang, T., Gao, G., & Krajnović, S. (2021). The effect of bogie positions on the aerodynamic behavior of a high-speed train: An IDDES study. Flow, Turbulence and Combustion, 107(2), 257–282. https://doi.org/10.1007/s10494-020-00236-9
  • Wang, J., Zhang, J., Zhang, Y., Xie, F., Krajnović, S., & Gao, G. (2018). Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 176, 211–224. https://doi.org/10.1016/j.jweia.2018.03.027
  • Wang, S., Burton, D., Herbst, A., Sheridan, J., & Thompson, M. C. (2018). The effect of bogies on high-speed train slipstream and wake. Journal of Fluids and Structures, 83, 471–489. https://doi.org/10.1016/j.jfluidstructs.2018.03.013
  • Wang, X., Yang, Q., He, Y., & Zhang, S. (2022). Numerical investigation on aerodynamic and electromagnetic influence of shape of The grilles in a rectangular duct. Journal of Physics: Conference Series, 2235(1), 0012037. https://doi.org/10.1088/1742-6596/2235/1/012037
  • Xu, L., Pan, Y., & Liu, T. (2014). Study of the T type back-supported tube and its application in EMU flow test. Journal of Experiments in Fluid Mechanics, 28(5), 99–103. https://doi.org/10.11729/syltlx20140010 [In Chinese].
  • Yang, A. M., Li, Y. F., Xing, H. W., Zhang, L., Feng, L. J., Li, Y. H., & Cheng, F. Y. (2017). Numerical study on aerodynamic characteristics of high-speed trains with considering thermal-flow coupling effects. Journal of Vibroengineering, 19(7), 5606–5626. https://doi.org/10.21595/jve.2017.18778
  • Yang, S., Xiang, D., Bryant, A., Mawby, P., Ran, L., & Tavner, P. (2010). Condition monitoring for device reliability in power electronic converters: A review. IEEE Transactions on Power Electronics, 25(11), 2734–2752. https://doi.org/10.1109/TPEL.2010.2049377
  • Yao, Z., Xiao, J., & Jiang, F. (2012). Characteristics of daily extreme-wind gusts along the Lanxin Railway in Xinjiang, China. Aeolian Research, 6, 31–40. https://doi.org/10.1016/j.aeolia.2012.07.002
  • Zhang, J., Adamu, A., Han, S., Wang, F., Gao, G., & Gidado, F. (2023). A numerical investigation of inter-carriage gap configurations on the aerodynamic performance of a wind-tunnel train model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 237(6), 734–750. https://doi.org/10.1177/09544097221136914
  • Zhang, J., Adamu, A., Su, X., Guo, Z., & Gao, G. (2022). Effect of simplifying bogie regions on aerodynamic performance of high-speed train. Journal of Central South University, 29(5), 1717–1734. https://doi.org/10.1007/s11771-022-4948-2
  • Zhang, J., Gidado, F., Adamu, A., Guo, Z., & Gao, G. (2023). An investigation on the wake flow of a generic ship using IDDES: The effect of computational parameters. Ocean Engineering, 271, 113644. https://doi.org/10.1016/j.oceaneng.2023.113644
  • Zhang, J., Guo, Z., Han, S., Krajnović, S., Sheridan, J., & Gao, G. (2022). An IDDES study of the near-wake flow topology of a simplified heavy vehicle. Transportation Safety and Environment, 4(2), tdac015. https://doi.org/10.1093/tse/tdac015
  • Zhang, J., Li, J., Tian, H., Gao, G., & Sheridan, J. (2016). Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance. Journal of Fluids and Structures, 61, 249–261. https://doi.org/10.1016/j.jfluidstructs.2015.10.006
  • Zhang, J., Wang, F., Han, S., Huang, T., Gao, G., & Wang, J. (2022). An investigation on the switching of asymmetric wake flow and the bi-stable flow states of a simplified heavy vehicle. Engineering Applications of Computational Fluid Mechanics, 16(1), 2035–2055. https://doi.org/10.1080/19942060.2022.2130432
  • Zhang, N., Lu, Z., Niu, J., & Zhou, D. (2017). Temperature field in equipment cabin of high-speed train in the harsh wind environment and extreme temperature condition. DEStech Transactions on Engineering and Technology Research, icia. https://doi.org/10.12783/dtetr/icia2017/15714
  • Zhang, S. (2007). Crh2 electric multiple unit. China Railway Publishing House Co., Ltd. ISBN 978-7-113-08189-8 (in Chinese).
  • Zhou, W., Chen, L., Wang, Z., Ding, S., & Shan, Y. (2019). Aerodynamic load spectrum and fatigue behaviour of high-speed train's equipment cabin. Fatigue & Fracture of Engineering Materials & Structures, 42(11), 2579–2595. https://doi.org/10.1111/ffe.13126
  • Zhu, J. Y., & Hu, Z. W. (2017). Flow between the train underbody and trackbed around the bogie area and its impact on ballast flight. Journal of Wind Engineering and Industrial Aerodynamics, 166, 20–28. https://doi.org/10.1016/j.jweia.2017.03.009