613
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Combined effects of blowing ratio and mist diameter with mainstream turbulence intensity in mist-assisted film cooling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2253296 | Received 26 Jun 2023, Accepted 24 Aug 2023, Published online: 07 Sep 2023

References

  • Abadi, S. M. H. B., Zirak, S., & Zargarabadi, M. R. (2020). Effect of pulsating injection and mainstream attack angle on film cooling performance of a gas turbine blade. Physics of Fluids, 32(11), Article 117102. http://dx.doi.org/10.1063/5.0029110
  • Abdelmaksoud, R., & Wang, T. (2020). Simulation of air/mist cooling in a conjugate, 3-D gas turbine vane with internal passage and external film cooling. International Journal of Heat and Mass Transfer, 160, 120197. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120197
  • Ahn, J. (2022). Large eddy simulation of film cooling: A review. Energies, 15(23), 8876. https://doi.org/10.3390/en15238876
  • ANSYS. (2021). ANSYS Fluent Theory Guide 21R1.
  • Baek, S. I., & Yavuzkurt, S. (2018). Effects of oscillations in the main flow on film cooling at various frequencies at a low blowing ratio. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2018-75440
  • Baheri Islami, S., & Jubran, B. (2012). The effect of turbulence intensity on film cooling of gas turbine blade from trenched shaped holes. Heat and Mass Transfer, 48(5), 831–840. https://doi.org/10.1007/s00231-011-0938-x
  • Barker, B., Casaday, B., Shankara, P., Ameri, A., & Bons, J. (2013). Coal ash deposition on nozzle guide vanes—part ii: Computational modeling. Journal of Turbomachinery, 135(1), 011015. https://doi.org/10.1115/1.4006399
  • Bianchini, C., Andrei, L., Andreini, A., & Facchini, B. (2013). Numerical benchmark of nonconventional RANS turbulence models for film and effusion cooling. Journal of Turbomachinery, 135(4), 321. http://dx.doi.org/10.1115/1.4007614
  • Bicen, A., & Jones, W. (1986). Velocity characteristics of isothermal and combusting flows in a model combustor. Combustion Science and Technology, 49(1–2), 1–15. https://doi.org/10.1080/00102208608923900
  • Bonilla, C., Webb, J., Clum, C., Casaday, B., Brewer, E., & Bons, J. (2012). The effect of particle size and film cooling on nozzle guide vane deposition. Journal of Engineering for Gas Turbines and Power, 134(10), 101901. https://doi.org/10.1115/1.4007057
  • Bons, J. P., MacArthur, C., & Rivir, R. (1996). The effect of high free-stream turbulence on film cooling effectiveness. Journal of Turbomachinery, 118(4), 814–825. https://doi.org/10.1115/1.2840939
  • Burd, S. W., & Simon, T. W. (1997). The influence of coolant supply geometry on film coolant exit flow and surface adiabatic effectiveness. Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Vol. 3: Heat Transfer; Electric Power; Industrial and Cogeneration.V003T09A005. https://doi.org/10.1115/97-GT-025.
  • Dwivedi, A., & Sarkar, S. (2022). Effects of freestream turbulence on air-mist film cooling: Two-phase flow simulations. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2022-81923
  • Dwivedi, A., & Sarkar, S. (2023). Numerical simulation of two-phase flow: Air-mist film cooling over a flat plate. International Journal of Thermal Sciences, 184, 107923. https://doi.org/10.1016/j.ijthermalsci.2022.107923
  • Harrison, K. L., & Bogard, D. G. (2007). CFD predictions of film cooling adiabatic effectiveness for cylindrical holes embedded in narrow and wide transverse trenches. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2007-28005
  • Harrison, K. L., & Bogard, D. G. (2008). Comparison of RANS turbulence models for prediction of film cooling performance. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2008-51423
  • Hassan, J. S., & Yavuzkurt, S. (2006). Comparison of four different two-equation models of turbulence in predicting film cooling performance. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2006-90860
  • Johnson, P. L., Shyam, V., & Hah, C. (2011). Reynolds-averaged Navier-Stokes solutions to flat plate film cooling scenarios (No. NASA/TM-2011-217025).
  • Kohli, A., & Bogard, D. G. (1998). Effects of very high free-stream turbulence on the jet–mainstream interaction in a film cooling flow. Journal of Turbomachinery, 120(4), 785–790. https://doi.org/10.1115/1.2841790
  • Leedom, D., & Acharya, S. (2008). Large eddy simulations of film cooling flow fields from cylindrical and shaped holes. Turbo Expo: Power for Land, Sea, and Air, https://doi.org/10.1115/GT2008-51009
  • Li, X., & Wang, T. (2006). Simulation of film cooling enhancement with mist injection. ASME Journal of Heat and Mass Transfer, 128(6), 509–519. https://doi.org/10.1115/1.2171695
  • Li, X., & Wang, T. (2007). Effects of various modeling schemes on mist film cooling simulation. ASME Journal of Heat and Mass Transfer, 129(4), 472–482. https://doi.org/10.1115/1.2709959
  • Liu, G., Gong, W., Wu, H., & Lin, A. (2021). Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine. Engineering Applications of Computational Fluid Mechanics, 15(1), 476–489. https://doi.org/10.1080/19942060.2021.1884600
  • Liu, R., Li, H., You, R., Tao, Z., & Huang, Y. (2023). Numerical decoupling of the effect of internal cooling and external film cooling on overall cooling effectiveness. Applied Thermal Engineering, 222, 119905. https://doi.org/10.1016/j.applthermaleng.2022.119905
  • Pabbisetty, M. R., & Prasad, B. (2021). Effect of blowing ratio on mist-assisted air film cooling of a flat plate: An experimental study. Journal of Thermal Science and Engineering Applications, 13(3), 031016. https://doi.org/10.1115/1.4048209
  • Pietrzyk, J., Bogard, D., & Crawford, M. (1990). Effects of density ratio on the hydrodynamics of film cooling. Journal of Turbomachinery, 112(3), 437–443. https://doi.org/10.1115/1.2927678
  • Ranz, W. (1952). Evaporation from drops part II. Chemical Engineering Progress, 48(4), 173–180.
  • Rao, P. M., Biswal, P., & Prasad, B. (2018). A computational study of mist assisted film cooling. International Communications in Heat and Mass Transfer, 95, 33–41. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.028
  • Saumweber, C., Schulz, A., & Wittig, S. (2003). Free-stream turbulence effects on film cooling with shaped holes. Journal of Turbomachinery, 125(1), 65–73. https://doi.org/10.1115/1.1515336
  • Sazhin, S. S. (2006). Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32(2), 162–214. https://doi.org/10.1016/j.pecs.2005.11.001
  • Schmidt, D. L., Sen, B., & Bogard, D. G. (1996). Film cooling with compound angle holes: Adiabatic effectiveness. Journal of Turbomachinery, 118(4), 807–813. https://doi.org/10.1115/1.2840938
  • Schroeder, R. P., & Thole, K. A. (2016). Effect of high freestream turbulence on flowfields of shaped film cooling holes. Journal of Turbomachinery, 138(9), 091001. https://doi.org/10.1115/1.4032736
  • Sinha, A., Bogard, D., & Crawford, M. (1991). Film-cooling effectiveness downstream of a single row of holes With variable density ratio. Journal of Turbomachinery, 113(3), 442–449. https://doi.org/10.1115/1.2927894
  • Stull, R. (2011). Wet-Bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. https://doi.org/10.1175/JAMC-D-11-0143.1
  • Terekhov, V. I., & Pakhomov, M. A. (2009). Film-cooling enhancement of the mist vertical wall jet on the cylindrical channel surface with heat transfer. ASME Journal of Heat and Mass Transfer, 131(6), 062201. https://doi.org/10.1115/1.3082404
  • Wang, M., Zhu, H., Liu, C., Guo, T., Zhang, L., & Li, N. (2022). Numerical analysis and design optimization on full coverage film-cooling for turbine guided vane. Engineering Applications of Computational Fluid Mechanics, 16(1), 904–936. https://doi.org/10.1080/19942060.2021.2019127
  • Wang, T., & Li, X. (2008). Mist film cooling simulation at gas turbine operating conditions. International Journal of Heat and Mass Transfer, 51(21–22), 5305–5317. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.040
  • Wei, J., Zhang, S., Zuo, J., Qin, J., Zhang, J., & Bao, W. (2023). Effects of combustion on the near-wall turbulence and performance for supersonic hydrogen film cooling using large eddy simulation. Physics of Fluids, 35(3), https://doi.org/10.1063/5.0139355
  • Yavuzkurt, S., & Habte, M. (2008, January). Effect of pulsating injection and mainstream attack angle on film cooling performance of a gas turbine blade. Turbo Expo: Power for Land, Sea, and Air, 43147, 133–143. https://doi.org/10.1115/GT2008-50153
  • Zhao, L., & Wang, T. (2014a). An experimental study of mist/air film cooling on a flat plate with application to gas turbine airfoils–part I: Heat transfer. Journal of Turbomachinery, 136(7), 071006. https://doi.org/10.1115/1.4025736
  • Zhao, L., & Wang, T. (2014b). An experimental study of mist/air film cooling on a flat plate with application to gas turbine airfoils–part II: Two-phase flow measurements and droplet dynamics. Journal of Turbomachinery, 136(7), 071007. https://doi.org/10.1115/1.4025738
  • Zhou, W., Chen, H., Liu, Y., Wen, X., & Peng, D. (2018). Unsteady analysis of adiabatic film cooling effectiveness for discrete hole with oscillating mainstream flow. Physics of Fluids, 30(12), 127103. https://doi.org/10.1063/1.5055028