535
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Motion simulation analysis of wear debris in an integrated detection unit for lubricating oil

, , ORCID Icon, , &
Article: 2255035 | Received 10 Mar 2023, Accepted 30 Aug 2023, Published online: 19 Sep 2023

References

  • Chiesa, M., Mathiesen, V., Melheim, J. A., & Halvorsen, B. (2005). Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed. Computers & chemical engineering, 29(2), 291–304.
  • Clift, R., Grace, J. R., & Weber, M. E. (2005). Bubbles, drops, and particles.
  • Coulson, J. M., Richardson, J. F., Backhurst, J. R., & Harker, J. H. (1991). Particle technology and separation processes (Vol. 2). Pergamon Press Headington Hill Hall.
  • Doron, P., & Barnea, D. J. I. J. O. M. F. (1996). Flow pattern maps for solid-liquid flow in pipes. International Journal of Multiphase Flow, 22(2), 273–283. https://doi.org/10.1016/0301-9322(95)00071-2
  • Forder, A., Thew, M., & Harrison, D. J. W. (1998). A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear, 216(2), 184–193. https://doi.org/10.1016/S0043-1648(97)00217-2
  • Ge, W., Wang, L., Xu, J., Chen, F., Zhou, G., Lu, L., Chang, Q., & Li, J. J. R. i. C. E. (2017). Discrete simulation of granular and particle-fluid flows: From fundamental study to engineering application. Reviews in Chemical Engineering, 33(6), 551–623. https://doi.org/10.1515/revce-2015-0079
  • Han, Z., Wang, Y., & Qing, X. J. S. (2017). Characteristics study of in-situ capacitive sensor for monitoring lubrication oil debris. Sensors, 17(12), 2851. https://doi.org/10.3390/s17122851
  • Hong, W., Wang, S., Tomovic, M. M., Liu, H., & Wang, X. J. (2015). A new debris sensor based on dual excitation sources for online debris monitoring. Measurement Science and Technology, 26(9), 095101. https://doi.org/10.1088/0957-0233/26/9/095101
  • Huang, S., Su, X., & Qiu, G. J. E. A. o. C. F. M. (2015). Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling. Engineering Applications of Computational Fluid Mechanics, 9(1), 411–418. https://doi.org/10.1080/19942060.2015.1048619
  • ISO %J Geneva, S. I. S. O. (1999). Hydraulic fluid power-fluids-method for coding level of contamination by solid particles.
  • Johnson, R., Swikert, M., & Bisson, E. E. (1993). The lubrication characteristics of synthetic lubricants at high sliding velocities. Lubrication Engineering, 49(5), 331–336.
  • Lei, H., Xiao, Y., Chen, F., Ahn, S., Wang, Z., Gui, Z., Luo, Y., & Zhao, X. (2018). Numerical simulation of solid-liquid two-phase flow in a centrifugal pump with different wear blades degree. IOP Conference Series: Earth and Environmental Science.
  • Li, H., Yu, X., Song, Y., Li, Q., & Lu, S. J. E. A. o. C. F. M. (2023). Experimental and numerical investigation on optimization of foaming performance of the kenics static mixer in compressed air foam system. Engineering Applications of Computational Fluid Mechanics, 17(1), 2183260. https://doi.org/10.1080/19942060.2023.2183260
  • Liu, X., Ding, X., Chen, C., An, R., Guo, W., Zhang, W., Nan, H., & Wang, Y. J. E. A. o. C. F. M. (2019). Investigating the filtration behavior of metal fiber felt using CFD-DEM simulation. Engineering Applications of Computational Fluid Mechanics, 13(1), 426–437. https://doi.org/10.1080/19942060.2019.1608306
  • Masom, R. J. B. j. o. N.-d. t. (1985). The development, proving and application of an in-line metal particle detector (MPD). British Journal of Non- Destructive Testing, 27(3), 159–166.
  • NAS. (2001). Cleanliness requirements of parts used in hydraulic systems. Aerospace Industries of America.
  • Nesic, S., & Postlethwaite, J. J. C. (1990). Relationship between the structure of disturbed flow and erosion—corrosion. Corrosion, 46(11), 874–880. https://doi.org/10.5006/1.3580852
  • Nilsson, A., Petersson, F., Jönsson, H., & Laurell, T. J. L. o. a. C. (2004). Acoustic control of suspended particles in micro fluidic chips. Lab on a Chip, 4(2), 131–135. https://doi.org/10.1039/B313493H
  • Ouyang, B., Ma, F., Dai, Y., & Zhang, Y. J. E. A. o. C. F. M. (2021). Numerical analysis on heat-flow-coupled temperature field for orthogonal face gears with oil–jet lubrication. Engineering Applications of Computational Fluid Mechanics, 15(1), 762–780. https://doi.org/10.1080/19942060.2021.1918259
  • Powrie, H. (2000). Use of electrostatic technology for aero engine oil system monitoring. 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484).
  • Qi-fei, L., Ren-nian, L., Wei, H. J. D., & Machinery, I. (2007). CFD simulation of sand· water two-phase inner flow field of volute. Journal of Drainage and Irrigation Machinery Engineering, 25(5), 61–64.
  • Ravelet, F., Bakir, F., Khelladi, S., Rey, R. J. E. T., & Science, F. (2013). Experimental study of hydraulic transport of large particles in horizontal pipes. Experimental Thermal and Fluid Science, 45, 187–197. https://doi.org/10.1016/j.expthermflusci.2012.11.003
  • Showalter, S., Pingalkar, S., & Pasha, S. (2012). Oil debris monitoring in aerospace engines and helicopter transmissions. 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1).
  • Stokes, G. G. (2007). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. https://doi.org/10.1190/1.9781560801931.ch3e
  • Sun, Y., Yang, H., Tong, H., Zhang, W., & Zeng, Z. J. C. J. o. S. I. C. (2017). Review of on-line detection for wear particles in lubricating oil of aviation engine. Chinese Journal of Scientific Instrument, 38(7), 1561–1569.
  • Tarpagkou, R., & Pantokratoras, A. J. A. M. M. (2013). CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations. Applied Mathematical Modelling, 37(5), 3478–3494. https://doi.org/10.1016/j.apm.2012.08.011
  • Tsuji, Y., Tanaka, T., & Yonemura, S. J. P. T. (1998). Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Technology, 95(3), 254–264. https://doi.org/10.1016/S0032-5910(97)03349-4
  • Wakiru, J. M., Pintelon, L., Muchiri, P. N., & Chemweno, P. K. (2019). A review on lubricant condition monitoring information analysis for maintenance decision support. Mechanical Systems and Signal Processing, 118, 108–132. https://doi.org/10.1016/j.ymssp.2018.08.039
  • Wang, Y., Han, Z., Gao, T., & Qing, X. J. (2018). In-situ capacitive sensor for monitoring debris of lubricant oil. Industrial Lubrication and Tribology, 70(7), 1310–1319. https://doi.org/10.1108/ILT-09-2017-0256
  • Wang, Y., Lin, T., Wu, D., Zhu, L., Qing, X., & Xue, W. J. S. (2022). A new in situ coaxial capacitive sensor network for debris monitoring of lubricating oil. Sensors, 22(5), 1777. https://doi.org/10.3390/s22051777
  • Wang, Z., Qian, L., Jiang, Z., Xue, X., & Reddy, K. J. A. A. (2020). Vibration effects of standing surface acoustic wave for separating suspended particles in lubricating oil. AIP Advances, 10(4), 045013. https://doi.org/10.1063/5.0004018
  • Wu, J., Graham, L., Wang, S., & Parthasarathy, R. J. M. E. (2010). Energy efficient slurry holding and transport. Minerals Engineering, 23(9), 705–712. https://doi.org/10.1016/j.mineng.2010.04.008
  • Wu, L., & Gu, L. J. C. M. M. (2015). Analysis of internal flow field of external gear pump based on FLUENT. Coal Mine Machinery, 36(10), 145.
  • Wu, Y., Zhang, H., Zeng, L., Chen, H., & Sun, Y. J. (2016). Determination of metal particles in oil using a microfluidic chip-based inductive sensor. Instrumentation Science & Technology, 44(3), 259–269. https://doi.org/10.1080/10739149.2015.1116007
  • Xu, L., Zhang, Q., Zheng, J., & Zhao, Y. J. P. T. (2016). Numerical prediction of erosion in elbow based on CFD-DEM simulation. Powder Technology, 302, 236–246.
  • Yang, K., & Hu, W. J. W. (2019). Simulation on debris particles conveying process in lubricant between gear engagement. Wear, 426-427, 1391–1398. https://doi.org/10.1016/j.wear.2018.12.066
  • Yong-Bo, H. E., Bin, X. U. J. T., & Technologies, M. (2016). Design of aircraft lubricating oil abrasive particles detection system based on capacitive sensor.
  • Yong-Bo, H. E., Jiang, K. J. T., & Technologies, M. (2014). Design of capacitance lubricating oil grains detecting system based on ring electrode.
  • Zhu, L., Wang, Y., Zhang, W., Xiao, X., Liu, Y., & Xue, W. J. T. I. (2023). tdEIT and Unet-based rapid imaging of redistributed wear particles in lubricating oil. Tribology International, 177, 107981. https://doi.org/10.1016/j.triboint.2022.107981
  • Zhu, L., Xiao, X., Wu, D., Wang, Y., Qing, X., & Xue, W. J. S. (2022a). Qualitative classification of lubricating oil wear particle morphology based on coaxial capacitive sensing network and SVM. Sensors, 22(17), 6653. https://doi.org/10.3390/s22176653
  • Zhu, L., Xiao, X., Xue, W., Liu, Y., & Wang, Y. J. T. I. (2022b). Microvibration-based orderly redistribution of wear particles in lubricating oil. Tribology International, 173, 107639. https://doi.org/10.1016/j.triboint.2022.107639
  • Zorgani, E., Al-Awadi, H., Yan, W., Al-Lababid, S., Yeung, H., Fairhurst, C. J. E. T., & Science, F. (2018). Viscosity effects on sand flow regimes and transport velocity in horizontal pipelines. Experimental Thermal and Fluid Science, 92, 89–96. https://doi.org/10.1016/j.expthermflusci.2017.08.024
  • Zouaoui, S., Djebouri, H., Mohammedi, K., Khelladi, S., & Aider, A. A. J. C. J. o. C. E. (2016). Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe. Chinese Journal of Chemical Engineering, 24(2), 317–322. https://doi.org/10.1016/j.cjche.2015.12.007