553
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on energy dissipation mechanism in a double-suction centrifugal pump based on Rortex and enstrophy

ORCID Icon, , , &
Article: 2261532 | Received 23 Apr 2023, Accepted 15 Sep 2023, Published online: 25 Sep 2023

References

  • Adams, T., Grant, C., & Watson, H. (2012). A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical Engineering and Mechatronics, 1(2), 66–71. https://doi.org/10.11159/ijmem.2012.008
  • ANSYS. (2020). ANSYS CFX-Solver theory guide release 2020 R2. ANSYS, Inc.
  • Cavazzini, G., Houdeline, J. B., Pavesi, G., Teller, O., & Ardizzon, G. (2018). Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants. Renewable and Sustainable Energy Reviews, 94, 399–409. https://doi.org/10.1016/j.rser.2018.06.018
  • Celik, I. B., Ghia, U., Roache, P. J., & Freitas, C. J. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering-Transactions of the ASME, 130, 7.
  • Chakraborty, P., Balachandar, S., & Adrian, R. J. (2005). On the relationships between local vortex identification schemes. Journal of Fluid Mechanics, 535, 189–214. https://doi.org/10.1017/S0022112005004726
  • Deng, Q., Pei, J., Wang, W., Lin, B., Zhang, C., & Zhao, J. (2021). Energy loss and radial force variation caused by impeller trimming in a double-suction centrifugal pump. Entropy, 23(9), 1228. https://doi.org/10.3390/e23091228
  • Gan, X., Pavesi, G., Pei, J., Yuan, S., Wang, W., & Yin, T. (2022b). Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump. Energy, 240, 122824. https://doi.org/10.1016/j.energy.2021.122824
  • Gan, X., Pei, J., Pavesi, G., Yuan, S., & Wang, W. (2022a). Application of intelligent methods in energy efficiency enhancement of pump system: A review. Energy Reports, 8, 11592–11606. https://doi.org/10.1016/j.egyr.2022.09.016
  • Gevorkov, L., Domínguez-García, J. L., & Romero, L. T. (2022). Review on solar photovoltaic-powered pumping systems. Energies, 16(1), 94. https://doi.org/10.3390/en16010094
  • Ghorani, M. M., Haghighi, M. H. S., & Riasi, A. (2020). Entropy generation minimization of a pump running in reverse mode based on surrogate models and NSGA-II. International Communications in Heat and Mass Transfer, 118, 104898. https://doi.org/10.1016/j.icheatmasstransfer.2020.104898
  • Gu, Y., Pei, J., Yuan, S., Wang, W., Zhang, F., Wang, P., & Liu, Y. (2019). Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method. Energy, 170, 986–997. https://doi.org/10.1016/j.energy.2018.12.204
  • Guan, H., Jiang, W., Yang, J., Wang, Y., Zhao, X., & Wang, J. (2020). Energy loss analysis of the double-suction centrifugal pump under different flow rates based on entropy production theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(20), 4009–4023. https://doi.org/10.1177/0954406220919795
  • Gülich, J. F. (2008). Centrifugal pumps. Springer.
  • Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 summer program.
  • Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94. https://doi.org/10.1017/S0022112095000462
  • Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2020). Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model. International Communications in Heat and Mass Transfer, 117, 104784. https://doi.org/10.1016/j.icheatmasstransfer.2020.104784
  • Khait, A., Noskov, A., Alekhin, V., & Bianco, V. (2018). Analysis of the local entropy generation in a double-circuit vortex tube. Applied Thermal Engineering, 130, 1391–1403. https://doi.org/10.1016/j.applthermaleng.2017.11.136
  • Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: A high-reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47(10-11), 2205–2215. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.025
  • Kock, F., & Herwig, H. (2005). Entropy production calculation for turbulent shear flows and their implementation in CFD codes. International Journal of Heat and Fluid Flow, 26(4), 672–680. https://doi.org/10.1016/j.ijheatfluidflow.2005.03.005
  • Li, D., Wang, H., Qin, Y., Han, L., Wei, X., & Qin, D. (2017). Entropy production analysis of hysteresis characteristic of a pump-turbine model. Energy Conversion and Management, 149, 175–191. https://doi.org/10.1016/j.enconman.2017.07.024
  • Lin, T., Li, X., Zhu, Z., Xie, J., Li, Y., & Yang, H. (2021). Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine. Renewable Energy, 163, 41–55. https://doi.org/10.1016/j.renene.2020.08.109
  • Liu, C., Gao, Y. S., Dong, X. R., Wang, Y. Q., Liu, J. M., Zhang, Y. N., & Gui, N. (2019). Third generation of vortex identification methods: Omega and liutex/rortex based systems. Journal of Hydrodynamics, 31(2), 205–223. https://doi.org/10.1007/s42241-019-0022-4
  • Liu, C., Wang, Y., Yang, Y., & Duan, Z. (2016). New omega vortex identification method. Science China Physics. Mechanics & Astronomy, 59, 1–9. https://doi.org/10.1007/s11433-016-0022-6
  • Liu, J., & Liu, C. (2019). Modified normalized rortex/vortex identification method. Physics of Fluids, 31(6), 061704. https://doi.org/10.1063/1.5109437
  • Liu, M., Tan, L., & Cao, S. (2019). Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine. Energy, 172, 712–732. https://doi.org/10.1016/j.energy.2019.01.162
  • Lu, Z., Xiao, R., Tao, R., Li, P., & Liu, W. (2022). Influence of guide vane profile on the flow energy dissipation in a reversible pump-turbine at pump mode. Journal of Energy Storage, 49, 104161. https://doi.org/10.1016/j.est.2022.104161
  • Miao, S., Yang, J., Shi, F., Wang, X., & Shi, G. (2018). Research on energy conversion characteristic of pump as turbine. Advances in Mechanical Engineering, 10(4), 168781 401877083. https://doi.org/10.1177/1687814018770836
  • Posa, A. (2021). LES study on the influence of the diffuser inlet angle of a centrifugal pump on pressure fluctuations. International Journal of Heat and Fluid Flow, 89, 108804. https://doi.org/10.1016/j.ijheatfluidflow.2021.108804
  • Posa, A., & Lippolis, A. (2018). A LES investigation of off-design performance of a centrifugal pump with variable-geometry diffuser. International Journal of Heat and Fluid Flow, 70, 299–314. https://doi.org/10.1016/j.ijheatfluidflow.2018.02.011
  • Qian, B., Cai, Y., Ding, Q., Zhao, D., Sun, W., & Wang, L. (2022). Investigation of Tip leakage vortex structure and trajectory in a centrifugal pump with a New omega vortex identification method. Applied Sciences, 12(10), 5270. https://doi.org/10.3390/app12105270
  • Qian, B., Chen, J., Wu, P., Wu, D., Yan, P., & Li, S. (2019). Investigation on inner flow quality assessment of centrifugal pump based on Euler head and entropy production analysis. In IOP conference series: Earth and environmental science (Vol. 240, No. 9, p. 092001). IOP Publishing. https://doi.org/10.1088/1755-1315/240/9/092001.
  • Qin, Y., Li, D., Wang, H., Liu, Z., Wei, X., & Wang, X. (2022). Investigation on the relationship between hydraulic loss and vortex evolution in pump mode of a pump-turbine. Journal of Hydrodynamics, 34(4), 555–569. https://doi.org/10.1007/s42241-022-0053-0
  • Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1), 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123
  • Shankar, V. K. A., Umashankar, S., Paramasivam, S., & Hanigovszki, N. (2016). A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 181, 495–513. https://doi.org/10.1016/j.apenergy.2016.08.070
  • Sun, L., Pan, Q., Zhang, D., Zhao, R., & van Esch, B. B. (2022). Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods. Energy, 258, 124794. https://doi.org/10.1016/j.energy.2022.124794
  • Tang, X., Jiang, W., Li, Q., Hou, G., Zhang, N., Wang, Y., & Chen, D. (2022). Analysis of hydraulic loss of the centrifugal pump as turbine based on internal flow feature and entropy generation theory. Sustainable Energy Technologies and Assessments, 52, 102070. https://doi.org/10.1016/j.seta.2022.102070
  • Tao, R., Li, P., Yao, Z., & Xiao, R. (2022). Investigation of the flow energy dissipation law in a centrifugal impeller in pump mode. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 236(2), 260–272. https://doi.org/10.1177/09576509211034976
  • Wang, C., Shi, W., Wang, X., Jiang, X., Yang, Y., Li, W., & Zhou, L. (2017). Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy, 187, 10–26. https://doi.org/10.1016/j.apenergy.2016.11.046
  • Wang, C., Zeng, Y., Yao, Z., & Wang, F. (2021). Rigid vorticity transport equation and its application to vortical structure evolution analysis in hydro-energy machinery. Engineering Applications of Computational Fluid Mechanics, 15(1), 1016–1033. https://doi.org/10.1080/19942060.2021.1938685
  • Wang, Y., Gao, Y., Liu, J., & Liu, C. (2019). Explicit formula for the liutex vector and physical meaning of vorticity based on the liutex-shear decomposition. Journal of Hydrodynamics, 31(3), 464–474. https://doi.org/10.1007/s42241-019-0032-2
  • Wang, Z., Xie, B., Xia, X., Yang, H., Zuo, Q., & Liu, Z. (2022). Energy loss of radial inflow turbine for organic rankine cycle using mixture based on entropy production method. Energy, 245, 123312. https://doi.org/10.1016/j.energy.2022.123312
  • Wu, J., Zhou, Y., & Fan, M. (1999). A note on kinetic energy, dissipation and enstrophy. Physics of Fluids, 11(2), 503–505. https://doi.org/10.1063/1.869866
  • Yuan, Z., Zhang, Y., Wang, C., & Lu, B. (2021). Study on characteristics of vortex structures and irreversible losses in the centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(5), 1080–1093. https://doi.org/10.1177/0957650920983061
  • Yuan, Z., Zhang, Y., Zhou, W., & Wang, C. (2022). Hydraulic loss analysis in a pump-turbine with special emphasis on local rigid vortex and shear. Physics of Fluids, 34(12), 125101. https://doi.org/10.1063/5.0124552
  • Zhang, N., Jiang, J., Gao, B., Liu, X., & Ni, D. (2020). Numerical analysis of the vortical structure and its unsteady evolution of a centrifugal pump. Renewable Energy, 155, 748–760. https://doi.org/10.1016/j.renene.2020.03.182
  • Zhao, J., Pei, J., Yuan, J., & Wang, W. (2022). Energy-saving oriented optimization design of the impeller and volute of a multi-stage double-suction centrifugal pump using artificial neural network. Engineering Applications of Computational Fluid Mechanics, 16(1), 1974–2001. https://doi.org/10.1080/19942060.2022.2127913
  • Zhao, X., Chen, J., Huang, B., & Wang, G. (2021). The identification of tip leakage vortex of an axial flow waterjet pump by using omega method and liutex. In C. Liu & Y. Wang (Eds.), Liutex and third generation of vortex definition and identification: An invited workshop from chaos 2020 (pp. 419–427). Springer International Publishing. https://doi.org/10.1007/978-3-030-70217-5_28
  • Zhao, X., Shen, X., Zhang, D., Xu, B., & van Esch, B. B. (2023). Numerical investigation on hydrodynamic performance of a pre-swirl stator pump-jet propulsor with special emphasis on energy loss mechanism. Ocean Engineering, 272, 113836. https://doi.org/10.1016/j.oceaneng.2023.113836