396
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on scroll vortex intake with partially or fully sealed cover of vortex chamber

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2265652 | Received 11 Jul 2023, Accepted 27 Sep 2023, Published online: 19 Oct 2023

References

  • Ackers, P., & Crump, E. S. (1960). The vortex drop. Proceedings of the Institution of Civil Engineers, 16(4), 433–442. https://doi.org/10.1680/iicep.1960.11720
  • ANSYS Inc. (2018). ANSYS Fluent 19.2 theory guide.
  • Binnie, A. M., & Hookings, G. A. (1948). Laboratory experiments on whirlpools. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 194(1038), 398–415.
  • Carty, A., O’Neill, C., Nash, S., Clifford, E., & Mulligan, S. (2019). Hydrodynamic modelling approaches to assess mechanisms affecting the structural performance and maintenance of vortex drops shaft structures. Journal of Structural Integrity and Maintenance, 4(3), 162–178. https://doi.org/10.1080/24705314.2019.1622188
  • Celik, I. B., Ghia, U., Roache, P. J., & Freitas, C. J. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering-Transactions of the ASME, 130(7), 1–4.
  • Chan, S. N. (2022). Insights from three-dimensional computational fluid dynamics modelling of a scroll vortex intake. Journal of Hydraulic Research, 60(3), 408–422. https://doi.org/10.1080/00221686.2021.2001591
  • Chan, S. N., Guo, J., & Lee, J. H. (2022). Physical and numerical modeling of swirling flow in a scroll vortex intake. Journal of Hydro-Environment Research, 40, 64–76. https://doi.org/10.1016/j.jher.2021.11.004
  • Chang, L., & Wei, W. (2022a). Numerical investigation of the plunging and vortex-flow regimes occurring in drop shafts with a tangential intake. Journal of Irrigation and Drainage Engineering, 148(8), 04022026. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001692
  • Chang, L., & Wei, W. (2022b). Numerical study on the effect of tangential intake on vortex dropshaft assessment using pressure distributions. Engineering Applications of Computational Fluid Mechanics, 16(1), 1100–1110. https://doi.org/10.1080/19942060.2022.2072954
  • Crispino, G., Contestabile, P., Vicinanza, D., & Gisonni, C. (2021). Energy head dissipation and flow pressures in vortex drop shafts. Water, 13(2), 165. https://doi.org/10.3390/w13020165
  • Del Giudice, G., & Gisonni, C. (2011). Vortex dropshaft retrofitting: case of Naples city (Italy). Journal of Hydraulic Research, 49(6), 804–808. https://doi.org/10.1080/00221686.2011.622148
  • Del Giudice, G., Gisonni, C., & Rasulo, G. (2010). Design of a scroll vortex inlet for supercritical approach flow. Journal of Hydraulic Engineering, 136(10), 837–841. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000249
  • Ding, Q., Ma, Y., & Zhu, D. Z. (2018). Air entrainment in a vertical dropshaft with limited air supply. Theoretical and Applied Mechanics Letters, 8(5), 315–319. https://doi.org/10.1016/j.taml.2018.05.002
  • Ding, Q., & Zhu, D. Z. (2018). Flow regimes in a dropshaft with limited air supply. Journal of Hydraulic Engineering, 144(5), 06018006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001455
  • Drioli, C. (1947). Jet Su un particolare tipo di imbocco per pozzi di scarico. L’Energia Elettrica, 24(10), 447–452.
  • Guo, J. (2012). Velocity field measurement of a scroll vortex intake flow. Master of Philosophy thesis [Unpublished doctoral dissertation]. University of Hong Kong, Hong Kong. https://hub.hku.hk/handle/10722/161583
  • Hajiahmadi, A., Crispino, G., Ghaeini-Hessaroeyeh, M., & Gisonni, C. (2022). Effect of the flow regime on the hydraulic features governing the operation of vortex drop shafts with spiral inlets. Water Science & Technology, 86(5), 1095–1107.
  • Jain, S. C., & Ettema, R. (1987). Swirling flow problems at intakes. In J. Knauss (Ed.), Vortex intakes, IAHR hydraulic structures design manual 1 (pp. 125–137). Balkema.
  • Mahmoudi-Rad, M., & Najafzadeh, M. (2021). Air entrainment mechanism in the vortex structure: Experimental study. Journal of Irrigation and Drainage Engineering, 147(5), 04021007. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001545
  • Motzet, K. M., & Valentin, F. (2002). Efficiency of a vortex chamber with horizontal bottom under supercritical flow. In Proc 9th international conference on urban drainage, Portland, 1–11.
  • Mulligan, S., Casserly, J., & Sherlock, R. (2016). Effects of geometry on strong free-surface vortices in subcritical approach flows. Journal of Hydraulic Engineering, 142(11), 04016051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001194
  • Mulligan, S., Creedon, L., Casserly, J., & Sherlock, R. (2019). An improved model for the tangential velocity distribution in strong free-surface vortices: An experimental and theoretical study. Journal of Hydraulic Research, 57(4), 547–560. https://doi.org/10.1080/00221686.2018.1499050
  • Mulligan, S., Plant, J., Nash, S., & Clifford, E. (2019). Vortex drop shaft structures: state-of-the-art and future trends. In Proc 38th IAHR world congress-water connecting the world, Panama, 3860–3869 September.
  • Plant, J., & Crawford, D. (2016). Pushing the limits of tangential vortex intakes: is higher capacity and flow measurement possible in a smaller footprint? In Proc WEFTEC 2016, water environment federation, New Orleans.
  • Sussman, M., Fatemi, E., Smereka, P., & Osher, S. (1998). An improved level set method for incompressible two-phase flows. Computers & Fluids, 27(5-6), 663–680. https://doi.org/10.1016/S0045-7930(97)00053-4
  • Sussman, M., & Puckett, E. G. (2000). A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2), 301–337. https://doi.org/10.1006/jcph.2000.6537
  • Viparelli, M. (1961). Les courants d'air et d'eau dans les puits verticaux. La Houille Blanche, 47(6), 857–869. https://doi.org/10.1051/lhb/1961053
  • Vischer, D. L., & Hager, W. H. (1995). Vortex drops. In Energy dissipators: Hydraulic structures design manual, Rotterdam, The Netherlands (pp. 167–181). Rotterdam, The Netherlands:  Balkema.
  • Wang, H., Mei, C., Liu, J., & Shao, W. (2018). A new strategy for integrated urban water management in China: Sponge city. Science China Technological Sciences, 61(3), 317–329. https://doi.org/10.1007/s11431-017-9170-5
  • Wei, W., & Chang, L. (2023). Analytical solutions for vortex flow at the tangential inlet of a vertical dropshaft. Physics of Fluids, 35, 015160. doi:10.1063/5.0135575
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. doi:10.1063/1.858424