427
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical validation of a hybrid method for modelling the wake flow of two in-line wind turbines

, , , &
Article: 2270505 | Received 23 Jun 2023, Accepted 09 Oct 2023, Published online: 31 Oct 2023

References

  • Ainslie, J. F. (1988). Calculating the flow field in the wake of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 27(1–3), 213–224. https://doi.org/10.1016/0167-6105(88)90037-2
  • Bastankhah, M., & Porté-Agel, F. (2014). A new analytical model for wind-turbine wakes. Renewable Energy, 70(1), 116–123. https://doi.org/10.1016/j.renene.2014.01.002
  • Berg, J., Troldborg, N., Sørensen, N. N., Patton, E., & Sullivan, P. (2017). Large-eddy simulation of turbine wake in complex terrain. Journal of Physics: Conference Series, 854, 012003. https://doi.org/10.1088/1742-6596/854/1/012003
  • Churchfield, M. J., Lee, S., Michalakes, J., & Moriarty, P. J. (2012). A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 13. https://doi.org/10.1080/14685248.2012.668191
  • Devenport, W. J., Rife, M. C., Liapis, S. I., & Follin, G. J. (1996). The structure and development of a wing-tip vortex. Journal of Fluid Mechanics, 312, 67–106. https://doi.org/10.1017/S0022112096001929
  • Ennis, B. L., Kelley, C. L., & Maniaci, D. C. (2015). Dynamic wake meandering model comparison with varying fidelity models for wind turbine wake prediction. 4(January 2015), 2885–2894. https://www.osti.gov/servlets/purl/1331655
  • Feng, D. H., Li, L. K. B., Gupta, V., & Wan, M. P. (2022). Componentwise influence of upstream turbulence on the far-wake dynamics of wind turbines. Renewable Energy, 200, 1081–1091. https://doi.org/10.1016/j.renene.2022.10.024
  • Frandsen, S. T., Barthelmie, R. J., Pryor, S. C., Rathmann, O., Larsen, S. E., Højstrup, J., & Thøgersen, M. (2006). Analytical modelling of wind speed deficit in large offshore wind forms. Wind Energy, 9(1–2), 39–53. https://doi.org/10.1002/we.189
  • Hao, H. B., Liao, K. P., Ma, Q. W., Zheng, X., Sun, H. B., & Khayyer, A. (2023). Wind turbine model-test method for achieving similarity of both model- and full-scale thrusts and torques. Applied Ocean Research, 130(January 2023), 103444. https://doi.org/10.1016/j.apor.2022.103444
  • Jensen, N. O. (1983). A note on wind turbine interaction. Risoe National Laboratory.
  • Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94. https://doi.org/10.1017/S0022112095000462
  • Jonkman, J., & Shaler, K. (2021). FAST. Farm user's guide and theory manual. Tech. Rep. NREL/TP-5000-7848. National Renewable Energy Laboratory. https:// www.nrel.gov/docs/fy21osti/78485.pdf
  • Larsen, G. C. (1988). A simple wake calculation procedure. Tech note Risø-M-2760. Risø National Laboratory.
  • Larsen, G. C., Madsen, H. A., Bingol, F., Mann, J., Ott, S., Sorensen, J. N., Okulov, V., Troldborg, N., Nielsen, M., Thomsen, K., Larsen, T. J., & Mikkelsen, R. (2007). Dynamic wake meandering modeling. Denmark. https://www.osti.gov/etdeweb/servlets/purl/20941220
  • Lee, M., & Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid Mechanics, 774, 395–415. https://doi.org/10.1017/jfm.2015.268
  • Porté-Agel, F., Bastankhah, M., & Shamsoddin, S. (2020). Wind-turbine and wind-farm flows: A review. Boundary-Layer Meteorology, 174(2020), 1–59. https://doi.org/10.1007/s10546-019-00473-0
  • Pryor, S. C., Shepherd, T. J., Volker, P., Hahmann, A. N., & Barthelmie, R. J. (2020). “Wind theft” from onshore wind turbine arrays: Sensitivity to wind farm parameterization and resolution. Journal of Applied Meteorology and Climatology (1). https://doi.org/10.1175/JAMC-D-19-0235.1
  • Shen, W. Z., Mikkelsen, R., Sørensen, J. N., & Bak, C. (2005). Tip loss corrections for wind turbine computations. Wind Energy, 8(4), 457–475. https://doi.org/10.1002/we.153
  • Sørensen, J. N., & Shen, W. Z. (2002, June). Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, 124(2), 393–399. https://doi.org/10.1115/1.1471361
  • Vanderwende, B. J., Kosovic´, B., Lundquist, J. K., & Mirocha, J. D. (2016). Simulating effects of a wind-turbine array using LES and RANS. Journal of Advances in Modeling Earth Systems, 8(3), 1376–1390. https://doi.org/10.1002/2016MS000652
  • Wang, Q., Liao, K. P., & Ma, Q. W. (2020). The influence of tilt angle on the aerodynamic performance of a wind turbine. Applied Sciences, 10(15), 5380. https://doi.org/10.3390/app10155380
  • Wang, T., Cai, C., Wang, X., Wang, Z., Chen, Y., Hou, C., Zhou, S., Xu, J., Zhang, Y., & Li, Q. (2023). Evolution mechanism of wind turbine wake structure in yawed condition by actuator line method and theoretical analysis. Energy Conversion and Management, 281, 116852. https://doi.org/10.1016/j.enconman.2023.116852
  • Yoo, S., & Oh, S. (2021). Flow analysis and optimization of a vertical axis wind turbine blade with a dimple. Engineering Applications of Computational Fluid Mechanics, 15(1), 1666–1681. https://doi.org/10.1080/19942060.2021.1989041
  • Yu, Z. Y., Ma, Q. W., Zheng, X., Liao, K. P., Sun, H. B., & Khayyer, A. (2023). A hybrid numerical model for simulating aero-elastic-hydro-mooring-wake dynamic responses of floating offshore wind turbine. 268(15 January 2023), 113050. https://doi.org/10.1016/j.oceaneng.2022.113050
  • Yuan, Y. M., Ma, Q. W., Yan, S. Q., Zheng, X., Liao, K. P., Ma, G., Sun, H. B., & Khayyer, A. (2023). A hybrid method for modelling wake flow of a wind turbine. Ocean Engineering, 281(1 August 2023), 114770. https://doi.org/10.1016/j.oceaneng.2023.114770