437
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical and intelligent neuro-computational modelling with Fourier’s energy and Fick’s mass flux theory of 3D fluid flow through a stretchable surface

ORCID Icon & ORCID Icon
Article: 2270675 | Received 03 Jul 2023, Accepted 09 Oct 2023, Published online: 31 Oct 2023

References

  • Asif Zahoor Raja, M., Shoaib, M., Tabassum, R., Khan, N. M., Kehili, S., & Bafakeeh, O. T. (2022). Stochastic numerical computing for entropy optimized of Darcy–Forchheimer nanofluid flow: Levenberg–Marquardt Algorithm. Chemical Physics Letters, 807, 140070. 10.1016j.cplett.2022.140070
  • Bejan, A. (1980). Second law analysis in heat transfer. Energy, 5(8–9), 720–732. doi:10.1016/0360-5442(80)90091-2
  • Bejan, A. (2013). Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. CRC Press.
  • Boujelbene, M., Rehman, S., Alqahtani, S., Alshehery, S., & Eldin, S. M. (2023). Thermal transport and magnetohydrodynamics flow of generalized Newtonian nanofluid with inherent irreversibility between conduit with slip at the walls. Engineering Applications of Computational Fluid Mechanics, 17(1), 2182364. doi:10.1080/19942060.2023.2182364
  • Dai, Z., Li, T., Xiang, Z.-R., Zhang, W., & Zhang, J. (2023). Aerodynamic multi-objective optimization on train nose shape using feedforward neural network and sample expansion strategy. Engineering Applications of Computational Fluid Mechanics, 17(1), 2226187. https://doi.org/10.1080/19942060.2023.2226187
  • Das, M., Kumbhakar, B., & Singh, J. (2022). Analysis of unsteady MHD Williamson nanofluid flow past a stretching sheet with nonlinear mixed convection, thermal radiation and velocity slips. J. Comput. Anal. Appl, 30(1), 176–195.
  • Elboughdiri, N., Reddy, C. S., Alshehri, A., Eldin, S. M., Muhammad, T., & Wakif, A. (2023). A passive control approach for simulating thermally enhanced Jeffery nanofluid flows nearby a sucked impermeable surface subjected to buoyancy and Lorentz forces. Case Studies in Thermal Engineering, 47, 103106. doi:10.1016/j.csite.2023.103106
  • Gowda, R. J. P., Al-Mubaddel, F. S., Kumar, R. N., Prasannakumara, B. C., Issakhov, A., Rahimi-Gorji, M., & Al-Turki, Y. A. (2021). Computational modelling of nanofluid flow over a curved stretching sheet using Koo–Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model. Chaos, Solitons & Fractals, 145, 110774. doi:10.1016/j.chaos.2021.110774
  • Gowda, R. J. P., Kumar, R. N., Kumar, R., & Prasannakumara, B. C. (2023). Three-dimensional coupled flow and heat transfer in non-Newtonian magnetic nanofluid: An application of Cattaneo–Christov heat flux model. Journal of Magnetism and Magnetic Materials, 567, 170329. doi:10.1016/j.jmmm.2022.170329
  • Gul, T., Nasir, S., Berrouk, A. S., Raizah, Z., Alghamdi, W., Ali, I., & Bariq, A. (2023). Simulation of the water-based hybrid nanofluids flow through a porous cavity for the applications of the heat transfer. Scientific Reports, 13(1), 7009. doi:10.1038/s41598-023-33650-w
  • Hayat, T., Aziz, A., Muhammad, T., & Alsaedi, A. (2017). Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface. Results in Physics, 7, 4071–4078.
  • Hayat, T., Shah, F., Alsaedi, A., & Ahmad, B. (2020). Entropy optimized dissipative flow of effective Prandtl number with melting heat transport and Joule heating. International Communications in Heat and Mass Transfer, 111, 104454. doi:10.1016/j.icheatmasstransfer.2019.104454
  • Hsu, P.-C., Liu, C., Song, A. Y., Zhang, Z., Peng, Y., Xie, J., Liu, K., Wu, C.-L., Catrysse, P. B., & Cai, L. (2017). A dual-mode textile for human body radiative heating and cooling. Science Advances, 3(11), e1700895. doi:10.1126/sciadv.1700895
  • Ibrahim, W., Gamachu, D., & Bedada, B. (2022). Entropy generation analysis of three dimensional mixed convection flow of couple stress nanofluid with non-Fourier’s heat and non-Fick’s mass flux model. Alexandria Engineering Journal, 61(11), 8843–8857. 10.1016j.aej.2022.02.021
  • Jayaprakash, M. C., Alsulami, M. D., Shanker, B., & Varun Kumar, R. S. (2022). Investigation of Arrhenius activation energy and convective heat transfer efficiency in radiative hybrid nanofluid flow. Waves in Random and Complex Media, 1–13. doi:10.1080/17455030.2021.2022811
  • Karimmaslak, H., Najafi, B., Band, S. S., Ardabili, S., Haghighat-Shoar, F., & Mosavi, A. (2021). Optimization of performance and emission of compression ignition engine fueled with propylene glycol and biodiesel–diesel blends using artificial intelligence method of ANN-GA-RSM. Engineering Applications of Computational Fluid Mechanics, 15(1), 413–425. doi:10.1080/19942060.2021.1880970
  • Khan, M. I., Alzahrani, F., & Hobiny, A. (2020). Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy–Forchheimer porous medium. Journal of Materials Research and Technology, 9(4), 7335–7340. doi:10.1016/j.jmrt.2020.04.079
  • Mandal, G., & Pal, D. (2023). Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO + Ag/kerosene oil) over a stretching sheet. Numerical Heat Transfer, Part A: Applications, 84(8), 853–876. https://doi.org/10.1080/10407782.2022.2163944
  • Moradi, A., Ahmadikia, H., Hayat, T., & Alsaedi, A. (2013). On mixed convection–radiation interaction about an inclined plate through a porous medium. International Journal of Thermal Sciences, 64, 129–136. doi:10.1016/j.ijthermalsci.2012.08.014
  • Nasir, S., Alghamdi, W., Gul, T., Ali, I., Sirisubtawee, S., & Aamir, A. (2023). Comparative analysis of the hydrothermal features of TiO2 water and ethylene glycol-based nanofluid transportation over a radially stretchable disk. Numerical Heat Transfer, Part B: Fundamentals, 83(5), 276–291.
  • Nasir, S., Berrouk, A. S., Aamir, A., & Shah, Z. (2023). Entropy optimization and heat flux analysis of Maxwell nanofluid configurated by an exponentially stretching surface with velocity slip. Scientific Reports, 13(1), 2006. doi:10.1038/s41598-023-29137-3
  • Nasir, S., Berrouk, A. S., Gul, T., Zari, I., Alghamdi, W., & Ali, I. (2023). Unsteady mix convectional stagnation point flow of nanofluid over a movable electro-magnetohydrodynamics Riga plate numerical approach. Scientific Reports, 13(1), 10947. doi:10.1038/s41598-023-37575-2
  • Navarro, J. M. A., Hinojosa, J. F., & Piña-Ortiz, A. (2021). Computational fluid dynamics and experimental study of turbulent natural convection coupled with surface thermal radiation in a cubic open cavity. International Journal of Mechanical Sciences, 198, 106360. doi:10.1016/j.ijmecsci.2021.106360
  • Nayak, M. K., Shaw, S., Waqas, H., & Muhammad, T. (2022). Numerical computation for entropy generation in Darcy–Forchheimer transport of hybrid nanofluids with Cattaneo–Christov double-diffusion. International Journal of Numerical Methods for Heat & Fluid Flow, 32(6), 1861–1882. doi:10.1108/HFF-04-2021-0295
  • Patil, P. M., Kulkarni, M., & Hiremath, P. S. (2020). Effects of surface roughness on mixed convective nanofluid flow past an exponentially stretching permeable surface. Chinese Journal of Physics, 64, 203–218. doi:10.1016/j.cjph.2019.12.006
  • Petela, R. (2010). Engineering thermodynamics of thermal radiation: For solar power utilization. McGraw-Hill Education.
  • Rafique, K., Mahmood, Z., Saleem, S., Eldin, S. M., & Khan, U. (2023). Impact of nanoparticle shape on entropy production of nanofluid over permeable MHD stretching sheet at quadratic velocity and viscous dissipation. Case Studies in Thermal Engineering, 45, 102992. doi:10.1016/j.csite.2023.102992
  • Ramzan, M., Farooq, M., Alsaedi, A., & Hayat, T. (2013). MHD three-dimensional flow of couple stress fluid with Newtonian heating. The European Physical Journal Plus, 128(5), 1–15. doi:10.1140/epjp/i2013-13049-5
  • Rasool, G., Wakif, A., Wang, X., Shafiq, A., & Chamkha, A. J. (2023). Numerical passive control of alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid flow over convective Riga surface. Alexandria Engineering Journal, 68, 747–762. 10.1016j.aej.2022.12.032
  • Sakkaravarthi, K., & Reddy, P. B. A. (2023). Entropy generation on Casson hybrid nanofluid over a curved stretching sheet with convective boundary condition: Semi-analytical and numerical simulations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(2), 465–481. doi:10.1177/09544062221119055
  • Shah, F., Hayat, T., & Momani, S. (2023). Non-similar analysis of the Cattaneo–Christov model in MHD second-grade nanofluid flow with Soret and Dufour effects. Alexandria Engineering Journal, 70, 25–35. doi:10.1016/j.aej.2022.10.035
  • Shah, Z., Raja, M. A. Z., Khan, W. A., Shoaib, M., Asghar, Z., Waqas, M., & Muhammad, T. (2022). Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity. Indian Journal of Physics, 96(13), 3901–3919. https://doi.org/10.1007/s12648-022-02307-1
  • Sharma, B. K., Sharma, P., Mishra, N. K., Noeiaghdam, S., & Fernandez-Gamiz, U. (2023). Bayesian regularization networks for micropolar ternary hybrid nanofluid flow of blood with homogeneous and heterogeneous reactions: Entropy generation optimization. Alexandria Engineering Journal, 77, 127–148. 10.1016j.aej.2023.06.080
  • Sharma, J., Ahammad, N. A., Wakif, A., Shah, N. A., Chung, J. D., & Weera, W. (2023). Solutal effects on thermal sensitivity of casson nanofluids with comparative investigations on Newtonian (water) and non-Newtonian (blood) base liquids. Alexandria Engineering Journal, 71, 387–400. doi:10.1016/j.aej.2023.03.062
  • Shaw, S. (2021). Impact of cattaneo–Christov heat flux On Al2O3–Cu/H2O–(CH2OH)2 hybrid nanofluid flow between two stretchable rotating disks. Energy Systems and Nanotechnology, 329–368. doi:10.1007/978-981-16-1256-5_17
  • Shoaib, M., Kainat, R., Ijaz Khan, M., Prasanna Kumara, B. C., Naveen Kumar, R., & Zahoor Raja, M. A. (2022). Darcy–Forchheimer entropy based hybrid nanofluid flow over a stretchable surface: intelligent computing approach. Waves in Random and Complex Media, 1–24. https://doi.org/10.1080/17455030.2022.2122627
  • Shoaib, M., Raja, M. A. Z., Zubair, G., Farhat, I., Nisar, K. S., Sabir, Z., & Jamshed, W. (2022). Intelligent computing with Levenberg–Marquardt backpropagation neural networks for third-grade nanofluid over a stretched sheet with convective conditions. Arabian Journal for Science and Engineering, 47(7), 8211–8229. https://doi.org/10.1007/s13369-021-06202-5
  • Soumya, D. O., Gireesha, B. J., Venkatesh, P., & Alsulami, M. D. (2022). Effect of NP shapes on Fe3O4–Ag/kerosene and Fe3O4–Ag/water hybrid nanofluid flow in suction/injection process with nonlinear-thermal-radiation and slip condition; Hamilton and Crosser’s model. Waves in Random and Complex Media, 1–22.
  • Tayebi, T., Öztop, H. F., & Chamkha, A. J. (2020). Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Thermal Science and Engineering Progress, 19, 100605. doi:10.1016/j.tsep.2020.100605
  • Wakif, A. (2023). Numerical inspection of two-dimensional MHD mixed bioconvective flows of radiating Maxwell nanofluids nearby a convectively heated vertical surface. Waves in Random and Complex Media, 1–22. doi:10.1080/17455030.2023.2179853
  • Wakif, A., Abderrahmane, A., Guedri, K., Bouallegue, B., Kaewthongrach, R., Kaewmesri, P., & Jirawattanapanit, A. (2022). Importance of exponentially falling variability in heat generation on chemically reactive von Kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature. Frontiers in Physics, 10, 988275. doi:10.3389/fphy.2022.988275
  • Wang, F., Sajid, T., Katbar, N. M., Jamshed, W., Eid, M. R., Abd-Elmonem, A., Mohamed Isa, S. S. P., & El Din, S. M. (2023). Computational examination of non-Darcian flow of radiative ternary hybridity Casson nanoliquid through moving rotary cone. Journal of Computational Design and Engineering, 10(4), 1657–1676. https://doi.org/10.1093/jcde/qwad057
  • Wehinger, G. D., & Flaischlen, S. (2019). Computational fluid dynamics modeling of radiation in a steam methane reforming fixed-bed reactor. Industrial & Engineering Chemistry Research, 58(31), 14410–14423. doi:10.1021/acs.iecr.9b01265
  • Zhang, K., Shah, N. A., Alshehri, M., Alkarni, S., Wakif, A., & Eldin, S. M. (2023). Water thermal enhancement in a porous medium via a suspension of hybrid nanoparticles: MHD mixed convective Falkner’s-Skan flow case study. Case Studies in Thermal Engineering, 47, 103062. doi:10.1016/j.csite.2023.103062
  • Zhang, X., Liu, X., Wang, X., Band, S. S., Bagherzadeh, S. A., Taherifar, S., Abdollahi, A., Bahrami, M., Karimipour, A., & Chau, K.-W. (2022). Energetic thermo-physical analysis of MLP-RBF feed-forward neural network compared with RLS Fuzzy to predict CuO/liquid paraffin mixture properties. Engineering Applications of Computational Fluid Mechanics, 16(1), 764–779. doi:10.1080/19942060.2022.2046167
  • Zhao, T., Khan, M. I., & Chu, Y. (2023). Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Mathematical Methods in the Applied Sciences, 46(3), 3012–3030. doi:10.1002/mma.7310
  • Zuhra, S., Raja, M. A. Z., Shoaib, M., Khan, Z., Nisar, K. S., Islam, S., & Khan, I. (2022). Numerical analysis of Cattaneo–Christov heat flux model over magnetic couple stress Casson nanofluid flow by Lavenberg–Marquard backpropagated neural networks. Waves in Random and Complex Media, 1–28. https://doi.org/10.1080/17455030.2022.2062484