510
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational evaluation of flight performance of flapping-wing nano air vehicles using hierarchical coupling of nonlinear dynamic and fluid-structure interaction analyses

, , &
Article: 2271053 | Received 21 Jun 2023, Accepted 09 Oct 2023, Published online: 02 Nov 2023

References

  • Bathe, K. J. (2006). Finite element procedures. Prentice-Hall.
  • Bathe, K. J., & Dvorkin, E. N. (1985). A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. International Journal for Numerical Methods in Engineering, 21(2), 367–383. https://doi.org/10.1002/nme.1620210213
  • Bhat, S. S., Zhao, J., Sheridan, J., Hourigan, K., & Thompson, M. C. (2019). Uncoupling the effects of aspect ratio, Reynolds number, and Rossby number on a rotating insect-wing planform. Journal of Fluid Mechanics, 859, 921–948. https://doi.org/10.1017/jfm.2018.833
  • Chen, L., Wu, J., & Cheng, B. (2020). Leading-edge vortex formation and transient lift generation on a revolving wing at a low Reynolds number. Aerospace Science and Technology, 97, 105589. https://doi.org/10.1016/j.ast.2019.105589
  • Chen, L., & Zhou, C. (2021). Linearized aerodynamic modeling of flapping rotary wings by rotating the leading-edge suction. AIAA Journal, 59(5), 1884–1890. https://doi.org/10.2514/1.J060230
  • Chen, Y., Zhao, H., Mao, J., Chirarattananon, P., Helbling, E. F., Hyun, N. S. P., Clarke, D. R., & Wood, R. J. (2019). Controlled flight of a microrobot powered by soft artificial muscles. Nature, 575(7782), 324–329. https://doi.org/10.1038/s41586-019-1737-7
  • Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954–1960. https://doi.org/10.1126/science.284.5422.1954
  • Eldredge, J. D., & Jones, A. R. (2019). Leading-edge vortices: Mechanics and modeling. Annual Review of Fluid Mechanics, 51(1), 75–104. https://doi.org/10.1146/annurev-fluid-010518-040334
  • Ellington, C., Van Den Berg, C., Willmott, A., & Thomas, A. (1996). Leading-edge vortices in insect flight. Nature, 384, 626–630. https://doi.org/10.1038/384626a0.
  • Felippa, C., Park, K. C., & Farhat, C. (2001). Partitioned analysis of coupled mechanical systems. Computer Methods in Applied Mechanics and Engineering, 190(24–25), 3247–3270. https://doi.org/10.1016/S0045-7825(00)00391-1
  • Galinski, C. (2005). Influence of MAV characteristics on their applications. Aviation, 9(4), 16–23. https://doi.org/10.3846/16487788.2005.9635913
  • Hylton, T., Martin, C., Tun, R., & Castelli, V. (2012). The DARPA nano air vehicle program. Proceedings of the 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 0583-91. https://doi.org/10.2514/6.2012-583
  • Ishihara, D. (2018). Role of fluid-structure interaction in generating the characteristic tip path of a flapping flexible wing. Physical Review E, 98(3), 032411-19. https://doi.org/10.1103/PhysRevE.98.032411
  • Ishihara, D. (2022). Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings. Fluids, 7(1), 26–45. https://doi.org/10.3390/fluids7010026
  • Ishihara, D., & Horie, T. (2014). A projection method for the monolithic interaction system of an incompressible fluid and a structure using a new algebraic splitting. Computer Modeling in Engineering and Sciences, 101(6), 421–440. https://doi.org/10.3970/cmes.2014.101.421
  • Ishihara, D., Horie, T., & Niho, T. (2014). An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies. Bioinspiration and Biomimetics, 9(4), 046009-22. https://doi.org/10.1088/1748-3182/9/4/046009
  • Ishihara, D., Horie, T., Niho, T., & Baba, A. (2015). Hierarchal decomposition for the structure-fluid-electrostatic interaction in a microelectromechanical system. Computer Modeling in Engineering and Sciences, 108(6), 429–452. https://doi.org/10.3970/cmes.2015.108.429
  • Ishihara, D., Jeong, M. J., Yoshimura, S., & Yagawa, G. (2002a). Design window search using continuous evolutionary algorithm and clustering-its application to shape design of microelectrostatic actuator. Computers and Structures, 80(31), 2469–2481. https://doi.org/10.1016/S0045-7949(02)00293-6
  • Ishihara, D., Liu, H., & Yoshimura, S. (2022a, July 31 to August 5). Computational biomechanics and biomimetics of flapping flight. Minisymposia at 15th world congress on computational mechanics and 8th Asian pacific congress on computational mechanics: WCCM-APCOM YOKOHAMA 2022 (wccm2022.org).
  • Ishihara, D., Murakami, S., Ohira, N., Ueo, J., & Takagi, M. (2020). Polymer micromachined transmission for insect-inspired flapping-wing nano air vehicle. In Proceedings of 15th annual IEEE international conference on nano/micro engineered and molecular system (pp. 176–179). https://doi.org/10.1109/NEMS50311.2020.9265594
  • Ishihara, D., Ohira, N., Takagi, M., Murakami, S., & Horie, T. (2017, 12–14 June). Fluid-structure interaction design of insect-like micro flapping wing. In Proceedings of 7th international conference on computational methods for coupled problems in science and engineering (pp. 870–875). https://congress.cimne.com/coupled2017/frontal/
  • Ishihara, D., Takei, A., Sawada, T., Kawai, H., & Yamada, T. (2022b, 31 August–2 September). Advanced numerical analysis and software in multiphysics and coupled problems. A symposium at the 41st JSST annual international conference on simulation Technology. JSST2022 Symposiums – JSST2022 (jsst-conf.jp).
  • Ishihara, D., & Yoshimura, S. (2005). A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. International Journal for Numerical Methods in Engineering, 64(2), 167–203. https://doi.org/10.1002/nme.1348
  • Ishihara, D., Yoshimura, S., & Yagawa, G. (2002b). Multi-steps strong coupling method for interaction of incompressible viscous fluid and an elastic body. In Proceedings of 5th world congress on computational mechanics, 7–12 July 2002, Vienna, Austria (pp. 1–10).
  • Jafferies, N. T., Helbing, E. F., Karpelson, M., & Wood, R. J. (2019). Untethered flight of an insect-inspired sized flapping-wing microscale aerial vehicle. Nature, 570(7762), 491–495. https://doi.org/10.1038/s41586-019-1322-0
  • Lee, Y. J., Lua, K. B., Lim, T. T., & Yeo, K. S. (2016). A quasi-steady aerodynamic model for flapping flight with improved adaptability. Bioinspiration & Biomimetics, 11(3), 036005. https://doi.org/10.1088/1748-3190/11/3/036005
  • Liu, H., & Aono, H. (2009). Size effects on insect hovering aerodynamics: An integrated computational study. Bioinspiration and Biomimetics, 4(1), 015002-14. https://doi.org/10.1088/1748-3182/4/1/015002
  • Liu, H., Nakata, T., Gao, N., Maeda, M., Aono, H., & Shyy, W. (2010). Micro air vehicle-motivated computational biomechanics in bio-flights: Aerodynamics, flight dynamics and maneuvering stability. Acta Mechanica Sinica, 26(6), 863–879. https://doi.org/10.1007/s10409-010-0389-5
  • Liu, Y., & Sun, M. (2008). Wing kinematics measurement and aerodynamics of hovering droneflies. The Journal of Experimental Biology, 211(13), 2014–2025. https://doi.org/10.1242/jeb.016931
  • Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603–607. https://doi.org/10.1126/science.1231806
  • Murakami, S., Ishihara, D., Araki, M., Ohira, N., Ito, T., & Horie, T. (2017). Microfabrication of hybrid structure composed of rigid silicon and flexible polyimide membranes. Micro and Nano Letter, 12(11), 913–915. https://doi.org/10.1049/mnl.2017.0428
  • Noguchi, N., & Hisada, T. (1993). Sensitivity analysis in post-buckling problems of shell structures. Computer and Structure, 47(4-5), 699–710. https://doi.org/10.1016/0045-7949(93)90352-E
  • Onishi, M., & Ishihara, D. (2019). Partitioned method of insect flapping flight for maneuvering analysis. Computer Modeling in Engineering and Sciences, 121(1), 145–175. https://doi.org/10.32604/cmes.2019.06781
  • Ozaki, T., & Hamaguchi, K. (2018). Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration. IEEE Robotics and Automation Letters, 3(4), 4217–4224. https://doi.org/10.1109/LRA.2018.2863104
  • Petricca, L., Ohlckers, P., & Grinde, C. (2011). Micro-and nano-air vehicles: State of the art. International Journal of Aerospace Engineering, 2011, 214549-65. https://doi.org/10.1155/2011/214549
  • Pringle, J. W. S. (1957). Insect flight. Cambridge University Press.
  • Ramegowda, P. C., Ishihara, D., Takata, R., Niho, T., & Horie, T. (2020). Hierarchically decomposed finite element method for a triply coupled piezoelectric, structure, and fluid fields of a thin piezoelectric bimorph in fluid. Computer Methods in Applied Mechanics and Engineering, 365, 113006–25. https://doi.org/10.1016/j.cma.2020.113006
  • Rashmikant. (2022). Development of polymer micromachined flapping wing nano air vehicle using iterative design window search methodology. Kyushu Institute of Technology Academic Repository, 1–157. https://doi.org/10.18997/00009006
  • Rashmikant, & Ishihara, D. (2021). A design window search using nonlinear dynamic simulation for polymer micro-machined transmission in insect-inspired flapping wing nano air vehicles. In Proceedings of 6th international conference on robotics and automation engineering (ICRAE) (pp. 162–167). https://doi.org/10.1109/ICRAE53653.2021.9657802
  • Rashmikant, & Ishihara, D. (2023). Iterative design window search for polymer micromachined flapping-wing nano air vehicles using nonlinear dynamic analysis. International Journal of Mechanics and Materials in Design, 1–23. https://doi.org/10.1007/s10999-022-09635-4
  • Rashmikant, Ishihara, D., Suetsugu, R., Murakami, S., & Ramegowada, P. C. (2021b). Improved design of polymer micromachined transmission for flapping-wing nano air vehicle. In Proceedings of 16th annual IEEE international conference on nano/micro engineered and molecular system (pp. 1320–1325). https://doi.org/10.1109/NEMS51815.2021.9451440
  • Rashmikant, Ishihara, D., Suetsugu, R., & Ramegowada, P. C. (2021a). One-wing polymer micromachined transmission for insect-inspired flapping-wing nano air vehicle. Engineering Research Express, 3(4), 045006–25. https://doi.org/10.1088/2631-8695/ac2bf0
  • Rubio, J. E., & Chakravarty, U. K. (2017). An investigation of the aerodynamic performance of a biomimetic insect-sized wing for micro air vehicles. In Proceedings of ASME international mechanical engineering congress and exposition (pp. 1–7). https://doi.org/10.1115/IMECE2016-65303
  • Ryu, S., & Kim, H. J. (2017). Development of a flapping-wing micro air vehicle capable of autonomous hovering with onboard measurements. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1–7). https://doi.org/10.1109/IROS.2017.8206158
  • Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087–1096. https://doi.org/10.1242/jeb.205.8.1087
  • Tezduyar, T. E., Mittal, S., Ray, S. E., & Shih, R. (1992). Incompressible flow computations with stabilized bilinear and linear equal–order–interpolation velocity–pressure elements. Computer Methods in Applied Mechanics and Engineering, 95(2), 221–242. https://doi.org/10.1016/0045-7825(92)90141-6
  • Vanneste, T., Paquet, J. B., Grondel, S., & Cattan, E. (2012). Design of a lift-optimized flapping-wing using a finite element aeroelastic framework of insect flight. In Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference (pp. 1–12). https://doi.org/10.2514/6.2012-1635
  • Wood, R. J. (2007). Liftoff of a 60 mg flapping-wing MAV. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1–6). https://doi.org/10.1109/IROS.2007.4399502
  • Zhang, Q., & Hisada, T. (2001). Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element methods. Computer Methods in Applied Mechanics and Engineering, 190(48), 6341–6357. https://doi.org/10.1016/S0045-7825(01)00231-6
  • Zou, Y., Zhang, W., Ke, X., Lou, X., & Zhou, S. (2017). The design and microfabrication of a sub 100 mg insect-scale flapping-wing robot. Micro & Nano Letters, 12(5), 297–300. https://doi.org/10.1049/mnl.2016.0687. https://www.electronics.toray/
  • Zou, Y., Zhang, W., Zhou, S., Ke, X., Cui, F., & Liu, W. (2018). Monolithic fabrication of an insect-scale self-lifting flapping-wing robot. Micro & Nano Letters, 13(2), 267–269. https://doi.org/10.1049/mnl.2017.0730
  • Zou, Y., Zhang, W. P., & Zhang, Z. (2016). Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Transactions on Robotics, 32(5), 1285–1289. https://doi.org/10.1109/TRO.2016.2593449