515
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the anti-rolling performance of a train using a vortex generator array

ORCID Icon, , , , , ORCID Icon, , & show all
Article: 2275614 | Received 15 Jun 2023, Accepted 21 Oct 2023, Published online: 07 Nov 2023

References

  • Ashton, N. (2017). Recalibrating Delayed Detached-Eddy Simulation to eliminate modelled-stress depletion. 23rd AIAA computational fluid dynamics conference, Denver, Colorado. 0605. American Institute of Aeronautics and Astronautics, Reston, Virginia.
  • Awais, M., & Bhuiyan, A. A. (2018). Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Thermal Science and Engineering Progress, 5, 524–545. https://doi.org/10.1016/j.tsep.2018.02.007
  • Baker, C. (2010). The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics, 98(6-7), 277–298. https://doi.org/10.1016/j.jweia.2009.11.002
  • Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C., & Rocchi, D. (2009). Cross-wind effects on road and rail vehicles. Vehicle System Dynamics, 47(8), 983–1022. https://doi.org/10.1080/00423110903078794
  • Betterton, J. G., Hackett, K. C., Ashill, P. R., Wilson, M. J., Woodcock, I. J., & Tilman, C. P. (2000). Laser Doppler anemometry investigation on Sub boundary layer vortex generators for flow control. 10th Intl. Symp. on. 10th Intl. Symp. on, Lisbon. July 10–13 2000.
  • CEN European Standard. (2018). Railway applications - Aerodynamics Part 6: Requirements and test procedures for cross wind assessment. BSI British Standards. https://doi.org/10.3403/02796008U.
  • Chen, H., Reuss, D. L., Hung, D. L. S., & Sick, V. (2013). A practical guide for using proper orthogonal decomposition in engine research. International Journal of Engine Research, 14(4), 307–319. https://doi.org/10.1177/1468087412455748
  • Chen, X, Zhong, S, Ozer, O, & Weightman, A. (2022a). Control of afterbody vortices from a slanted-base cylinder using sweeping jets. Physics of Fluids, 34(7), 0785. http://dx.doi.org/10.1063/5.0094565
  • Chen, X, Zhong, S, Ozer, O, & Weightman, A. (2022b). Drag reduction of a slanted-base cylinder using sweeping jets. Physics of Fluids, 34(10), 491. http://dx.doi.org/10.1063/5.0118386
  • Davidson, L. (2009). Large Eddy simulations: How to evaluate resolution. International Journal of Heat and Fluid Flow, 30(5), 1016–1025. https://doi.org/10.1016/j.ijheatfluidflow.2009.06.006
  • Diedrichs, B., Sima, M., Orellano, A., & Tengstrand, H. (2007). Crosswind stability of a high-speed train on a high embankment. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 205–225. https://doi.org/10.1243/0954409JRRT126
  • Dong, X., Wang, Y., Chen, X., Dong, Y., Zhang, Y., & Liu, C. (2018). Determination of epsilon for Omega vortex identification method. Journal of Hydrodynamics, 30(4), 541–548. https://doi.org/10.1007/s42241-018-0066-x
  • Du, H., Zhou, D., Meng, S., & Luo, C. (2022). Effect of vortex generators on the aerodynamic performance of high-speed trains. Flow, Turbulence and Combustion, 109(3), 627–645. https://doi.org/10.1007/s10494-022-00349-3
  • East Japan Railway Company. (2022). JR East Group Report INTEGRATED REPORT 2022. https://www.jreast.co.jp/e/environment/pdf_2022/all.pdf.
  • Fouatih, O. M., Medale, M., Imine, O., & Imine, B. (2016). Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators. European Journal of Mechanics - B/Fluids, 56, 82–96. https://doi.org/10.1016/j.euromechflu.2015.11.006
  • Fujii, T., Maeda, T., Ishida, H., Imai, T., Tanemoto, K., & Suzuki, M. (1999). Wind-Induced accidents of train/vehicles and their measures in Japan. Quarterly Report of RTRI, 40(1), 50–55. https://doi.org/10.2219/rtriqr.40.50
  • Gallagher, M., Morden, J., Baker, C., Soper, D., Quinn, A., Hemida, H., & Sterling, M. (2018). Trains in crosswinds – Comparison of full-scale on-train measurements, physical model tests and CFD calculations. Journal of Wind Engineering and Industrial Aerodynamics, 175, 428–444. https://doi.org/10.1016/j.jweia.2018.03.002
  • Gao, G., Zhang, J., & Xiong, X.-H. (2014). Location of anemometer along Lanzhou-Xinjiang railway. Journal of Central South University, 21(9), 3698–3704. https://doi.org/10.1007/s11771-014-2353-1
  • Gao, H., Liu, T., Gu, H., Jiang, Z., Huo, X., Xia, Y., & Chen, Z. (2021). Full-scale tests of unsteady aerodynamic loads and pressure distribution on fast trains in crosswinds. Measurement, 186, 110152. https://doi.org/10.1016/j.measurement.2021.110152
  • Gautier, P.-E., Sacre, C., Delaunay, D., Parrot, M., Dersigny, C., & Bodere, S. (2001). “TGV méditerranée” high speed line safety against cross-winds: A slow-down system based on anemometric measurements and spatial short-term meteorological prediction. Rapport technique, SNCF.
  • Gibertini, G., Boniface, J. C., Zanotti, A., Droandi, G., Auteri, F., Gaveriaux, R., & Le Pape, A. (2015). Helicopter drag reduction by vortex generators. Aerospace Science and Technology, 47, 324–339. https://doi.org/10.1016/j.ast.2015.10.004
  • Godard, G., & Stanislas, M. (2006). Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators. Aerospace Science and Technology, 10(3), 181–191. https://doi.org/10.1016/j.ast.2005.11.007
  • Gorton, S., Jenkins, L., & Anders, S. (2002). Flow control device evaluation for an internal flow with an adverse pressure gradient. 40th AIAA aerospace sciences meeting & exhibit, Reno, NV, U.S.A. 14 January 2002 - 17 January 2002. American Institute of Aeronautics and Astronautics, Reston, Virigina.
  • Hamba, F. (2009). Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow. International Journal of Heat and Fluid Flow, 30(1), 20–31. https://doi.org/10.1016/j.ijheatfluidflow.2008.10.002
  • Hemida, H., & Baker, C. (2010). Large-eddy simulation of the flow around a freight wagon subjected to a crosswind. Computers & Fluids, 39(10), 1944–1956. https://doi.org/10.1016/j.compfluid.2010.06.026
  • Huo, X.-S., Liu, T.-H., Chen, Z.-W., Li, W.-H., Niu, J.-Q., & Gao, H.-R. (2023). Aerodynamic characteristics of double-connected train groups composed of different kinds of high-speed trains under crosswinds: A comparison study. Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2022.09.011
  • Koike, M., Tsunehisa, N., & Naoki, H. (2004). Research on aerodynamic drag reduction by vortex generators. Mitsubishi Motors Technical Review, 16, 11–16.
  • Krajnovic, S. (2009). Shape optimization of high-speed trains for improved aerodynamic performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(5), 439–452. https://doi.org/10.1243/09544097JRRT251
  • Kuya, Y., Takeda, K., Zhang, X., Beeton, S., & Pandaleon, T. (2009). Flow physics of a race car wing with vortex generators in ground effect. Journal of Fluids Engineering, 131(12), 121103. https://doi.org/10.1115/1.4000423
  • Li, T., Liang, H., Zhang, J., & Zhang, J. (2023). Numerical study on aerodynamic resistance reduction of high-speed train using vortex generator. Engineering Applications of Computational Fluid Mechanics, 17(1), e2153925. https://doi.org/10.1080/19942060.2022.2153925
  • Li, W., Liu, T., Martinez-Vazquez, P., Chen, Z., Huo, X., Liu, D., & Xia, Y. (2022). Correlation tests on train aerodynamics between multiple wind tunnels. Journal of Wind Engineering and Industrial Aerodynamics, 229, 105137. https://doi.org/10.1016/j.jweia.2022.105137
  • Lin, J. C. (2002). Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences, 38(4-5), 389–420. https://doi.org/10.1016/S0376-0421(02)00010-6
  • Lin, J. C., Howard, F. G., Bushnell, D. M., & Selby, G. V. (1990a). Investigation of several passive and active methods for turbulent flow separation control. 21st fluid dynamics, plasma dynamics and lasers conference, Seattle, WA, U.S.A. 18 June 1990 - 20 June 1990. American Institute of Aeronautics and Astronautics, Reston, Virigina, p. 17.
  • Lin, J. C., Howard, F. G., & Selby, G. V. (1990b). Small submerged vortex generators for turbulent flow separation control. Journal of Spacecraft and Rockets, 27(5), 503–507. https://doi.org/10.2514/3.26172
  • Liu, C., Wang, Y., Yang, Y., & Duan, Z. (2016a). New omega vortex identification method. Science China Physics, Mechanics & Astronomy, 59(8), https://doi.org/10.1007/s11433-016-0022-6
  • Liu, T., Wang, L., Gao, H., Xia, Y., Guo, Z., Li, W., & Liu, H. (2022). Research progress on train operation safety in Xinjiang railway under wind environment. Transportation Safety and Environment, 4, tdac005. https://doi.org/10.1093/tse/tdac005
  • Liu, T.-H., Su, X., Zhang, J., Chen, Z.-W., & Zhou, X. (2016b). Aerodynamic performance analysis of trains on slope topography under crosswinds. Journal of Central South University, 23(9), 2419–2428. https://doi.org/10.1007/s11771-016-3301-z
  • Liu, W., Guo, D.-L., Zi-Jian, Z., & Guo-Wei, Y. (2020). Study of dynamic characteristics in wake flow of high-speed train based on POD. Journal of the China Railway Society, 42, 49–57.
  • Maleki, S., Burton, D., & Thompson, M. C. (2020). On the flow past and forces on double-stacked wagons within a freight train under cross-wind. Journal of Wind Engineering and Industrial Aerodynamics, 206, 104224. https://doi.org/10.1016/j.jweia.2020.104224
  • Masoud, M., & Ali, R. M. (2021). 2D and 3D numerical and experimental analyses of the aerodynamic effects of air fences on a high-speed train. Wind and Structures, 32, 539–550. https://doi.org/10.12989/WAS.2021.32.6.539
  • Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4.
  • Mohebbi, M., & Rezvani, M. A. (2018). Two-dimensional analysis of the influence of windbreaks on airflow over a high-speed train under crosswind using lattice Boltzmann method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 863–872. https://doi.org/10.1177/0954409717699502
  • Mohebbi, M., & Safaee, A. M. (2022). The optimum model determination of porous barriers in high-speed tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236(1), 15–25. https://doi.org/10.1177/0954409721995323
  • Muld, T. W., Efraimsson, G., & Henningson, D. S. (2012a). Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decomposition. Computers & Fluids, 57, 87–97. https://doi.org/10.1016/j.compfluid.2011.12.012
  • Muld, T. W., Efraimsson, G., & Henningson, D. S. (2012b). Mode decomposition on surface-mounted cube. Flow, Turbulence and Combustion, 88(3), 279–310. https://doi.org/10.1007/s10494-011-9355-y
  • Niu, J., Zhou, D., & Liang, X. (2018). Numerical investigation of the aerodynamic characteristics of high-speed trains of different lengths under crosswind with or without windbreaks. Engineering Applications of Computational Fluid Mechanics, 12(1), 195–215. https://doi.org/10.1080/19942060.2017.1390786
  • Östh, J., Kaiser, E., Krajnović, S., & Noack, B. R. (2015). Cluster-based reduced-order modelling of the flow in the wake of a high speed train. Journal of Wind Engineering and Industrial Aerodynamics, 145, 327–338. https://doi.org/10.1016/j.jweia.2015.06.003
  • Park, H., & Kim, J. (2016). Electromagnetic induction energy harvester for high-speed railroad applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 41–48. https://doi.org/10.1007/s40684-016-0006-6
  • Schubauer, G. B., & Spangenberg, W. G. (1960). Forced mixing in boundary layers. Journal of Fluid Mechanics, 8((01|1)), 10–32. https://doi.org/10.1017/S0022112060000372
  • Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  • Siemens. (2021). Simcenter STAR-CCM+ 2021.3 User Guide.
  • Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Quarterly of Applied Mathematics, 45, 561–571. https://doi.org/10.1090/qam/910462
  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
  • Spalart, P. R., Jou, W.-H., Strelets, M., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, in: First AFOSR International Conference on DNS/LES approach. Advances in DNS/LES, Louisiana Tech University. Greyden Press.
  • Th. Tielkes, Ch. Heine, Möller, M., & Driller, J. (2008). A Probabilistic Approach to Safeguard Cross Wind Safety of Passenger Railway Operation in Germany: The new DB Guideline Ril 80704.
  • Wang, J., Minelli, G., Dong, T., He, K., Gao, G., & Krajnović, S. (2020). An IDDES investigation of Jacobs bogie effects on the slipstream and wake flow of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 202, 104233. https://doi.org/10.1016/j.jweia.2020.104233
  • Wang, Y., & Gui, N. (2019). A review of the third-generation vortex identification method and its applications. Chinese Journal of Hydrodynamics, 34.
  • Wortman, A. (1999). Reduction of fuselage form drag by vortex flows. Journal of Aircraft, 36(3), 501–506. https://doi.org/10.2514/2.2484
  • Zanotti, A., Droandi, G., Auteri, F., Gibertini, G., & Le Pape, A. (2016). Robustness and limits of vortex generator effectiveness in helicopter drag reduction. Journal of the American Helicopter Society, 61(3), 32007. https://doi.org/10.4050/JAHS.61.032007
  • Zhang, J., Gao, G., Liu, T.-H., & Li, Z. (2015). Crosswind stability of high-speed trains in special cuts. Journal of Central South University, 22(7), 2849–2856. https://doi.org/10.1007/s11771-015-2817-y
  • Zhang, J, Huang, F, Yu, Y, Han, S, Ding, Y, & Gao, G. (2023). A novel wake flow control method for drag reduction of a high-speed train with vortex generators installing on streamlined tail nose. Physics of Fluids, 35(10), 337. http://dx.doi.org/10.1063/5.0173350