464
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Aerodynamic impact of wind-sand flow on moving trains in tunnel-embankment transition section: from field testing to CFD modeling

, , &
Article: 2279993 | Received 31 Aug 2023, Accepted 01 Nov 2023, Published online: 14 Nov 2023

References

  • Arias-Cuevas, O., Li, Z. L., & Lewis, R. (2011). A laboratory investigation on the influence of the particle size and slip during sanding on the adhesion and wear in the wheel–rail contact. Wear, 271(1-2), 14–24. https://doi.org/10.1016/j.wear.2010.10.050
  • Bruno, L., Fransos, D., & Giudice, A. L. (2018a). Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines. Journal of Wind Engineering and Industrial Aerodynamics, 173, 79–90. https://doi.org/10.1016/j.jweia.2017.12.005
  • Bruno, L., Horvat, M., & Raffaele, L. (2018b). Windblown sand along railway infrastructures: A review of challenges and mitigation measures. Journal of Wind Engineering and Industrial Aerodynamics, 177, 340–365. https://doi.org/10.1016/j.jweia.2018.04.021
  • Carrascal, I. A., Casado, J. A., Diego, S., & Polanco, J. A. (2016). Dynamic behaviour of high-speed rail fastenings in the presence of desert sand. Construction and Building Materials, 117, 220–228. https://doi.org/10.1016/j.conbuildmat.2016.05.023
  • Deng, E., Yang, W. C., Lei, M. F., Zhu, Z. H., & Zhang, P. P. (2019). Aerodynamic loads and traffic safety of high-speed trains when passing through two windproof facilities under crosswind: A comparative study. Engineering Structures, 188(1), 320–339. https://doi.org/10.1016/j.engstruct.2019.01.080
  • Deng, E., Yue, H., Ni, Y. Q., He, X. H., Yang, W. C., & Chen, Z. W. (2023). Wake dynamic characteristics of windproof structures in embankment–bridge sections along a high-speed railway under natural strong crosswinds. Physics of Fluids, 35(5), 055109. https://doi.org/10.1063/5.0147079
  • Deng, G. X., Ma, W., Peng, Y., Wang, S. M., Yao, S., & Peng, S. (2021). Experimental study on laminated glass responses of high-speed trains subject to windblown sand particles loading. Construction and Building Materials, 300, 124332. https://doi.org/10.1016/j.conbuildmat.2021.124332
  • Faccoli, M., Petrogalli, C., Lancini, M., Ghidini, A., & Mazzù, A. (2018). Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels. Wear, 396-397, 146–161. https://doi.org/10.1016/j.wear.2017.05.012
  • Giudice, A. L., & Preziosi, L. (2020). A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching. Applied Mathematical Modelling, 79, 68–84. https://doi.org/10.1016/j.apm.2019.07.060
  • Hao, Y. H., Feng, Y. J., & Fan, J. C. (2016). Experimental study into erosion damage mechanism of concrete materials in a wind-blown sand environment. Construction and Building Materials, 111, 662–670. https://doi.org/10.1016/j.conbuildmat.2016.02.137
  • He, C. G., Zou, G., Gan, Y. Z., Ye, R. W., Zhai, Y. J., & Liu, J. H. (2023). Analysing the rolling contact damage behavior of a high-speed wheel tread - A case study. Wear, 522, 204677. https://doi.org/10.1016/j.wear.2023.204677
  • He, P. L., Zhang, J., Herrmann, H. J., & Huang, N. (2022). Large-eddy simulation of wind-blown sand under unstable atmospheric boundary layer. Science Bulletin, 67(14), 1421–1424. https://doi.org/10.1016/j.scib.2022.05.011
  • He, X. H., Fang, D. X., Li, H., & Shi, K. (2019). Parameter optimization for improved aerodynamic performance of louver-type wind barrier for train-bridge system. Journal of Central South University, 26(1), 229–240. https://doi.org/10.1007/s11771-019-3996-8
  • He, X. H., & Li, H. (2020). Review of aerodynamics of high-speed train-bridge system in crosswinds. Journal of Central South University, 27(4), 1054–1073. https://doi.org/10.1007/s11771-020-4351-9
  • Horvat, M., Bruno, L., & Khris, S. (2021). CWE study of wind flow around railways: Effects of embankment and track system on sand sedimentation. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104476. https://doi.org/10.1016/j.jweia.2020.104476
  • Horvat, M., Bruno, L., & Khris, S. (2022). Receiver sand mitigation measures along railways: CWE-based conceptual design and preliminary performance assessment. Journal of Wind Engineering and Industrial Aerodynamics, 228, 105109. https://doi.org/10.1016/j.jweia.2022.105109
  • Huang, B., Li, Z. N., Gong, B., Zhang, Z. T., Shan, B., & Pu, O. (2023). Study on the sandstorm load of low-rise buildings via wind tunnel testing. Journal of Building Engineering, 65, 105821. https://doi.org/10.1016/j.jobe.2022.105821
  • Huang, B., Li, Z. N., Zhao, Z. F., Wu, H. H., Zhou, H. F., & Cong, S. (2018). Near-ground impurity-free wind and wind-driven sand of photovoltaic power stations in a desert area. Journal of Wind Engineering and Industrial Aerodynamics, 179, 483–502. https://doi.org/10.1016/j.jweia.2018.06.017
  • Jiang, Y. S., Gao, Y. H., Dong, Z. B., Liu, B. L., & Zhao, L. (2018). Simulations of wind erosion along the qinghai-Tibet railway in north-central Tibet. Aeolian Research, 32, 192–201. https://doi.org/10.1016/j.aeolia.2018.03.006
  • Kian, A. R. T., Sadeghi, J., & Zakeri, J. A. (2022). Influences of railway ballast sand contamination on loading pattern of pre-stressed concrete sleeper. Construction and Building Materials, 233, 117324. https://doi.org/10.1016/j.conbuildmat.2019.117324
  • Li, T., Dai, Z., Yu, M., & Zhang, W. (2021a). Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths. Engineering Applications of Computational Fluid Mechanics, 15(1), 549–560. https://doi.org/10.1080/19942060.2021.1895321
  • Li, T., Qin, D., & Zhang, J. Y. (2019). Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind. Chinese Journal of Mechanical Engineering, 32(5), 12.
  • Li, Z. N., Pu, O., Gong, B., Zhao, Z. F., Bing, B., & Wu, H. H. (2021b). A new method of measuring sand impact force using piezoelectric ceramics. Measurement, 179, 109390. https://doi.org/10.1016/j.measurement.2021.109390
  • Masoud, M., & Amir, M. S. (2021). The optimum model determination of porous barriers in high-speed tracks. Journal of Rail and Rapid Transit, 236(1), 15–25.
  • Masoud, M., & Mohammad, A. R. (2013). Numerical calculations of aerodynamic performance a regional passenger train at crosswind conditions. International Journal of Vehicle Structures and Systems, 5(2), 68–74.
  • Masoud, M., & Mohammad, A. R. (2018a). Two-dimensional analysis of the influence of windbreaks on airflow over a high-speed train under crosswind by using lattice boltzmann method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 863–872. https://doi.org/10.1177/0954409717699502
  • Masoud, M., & Mohammad, A. R. (2018b). Multi objective optimization of aerodynamic design of high speed railway windbreaks using lattice Boltzmann method and wind tunnel test results. International Journal of Rail Transportation, 6(3), 183–201. https://doi.org/10.1080/23248378.2018.1463873
  • Masoud, M., Yuan, M., & Rasul, M. (2023). The analysis of utilizing multiple fences in high-speed tracks on the aerodynamic characteristics of a high-speed train model. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,
  • Mehdipour, R., & Baniamerian, Z. (2019). A new approach in reducing sand deposition on railway tracks to improve transportation. Aeolian Research, 41, 100537. https://doi.org/10.1016/j.aeolia.2019.07.003
  • Niu, J. Q., Zhang, Y. C., Li, R., Chen, Z. W., Yao, H. D., & Wang, Y. M. (2022). Aerodynamic simulation of effects of one- and two-side windbreak walls on a moving train running on a double track railway line subjected to strong crosswind. Journal of Wind Engineering and Industrial Aerodynamics, 221, 104912. https://doi.org/10.1016/j.jweia.2022.104912
  • Paz, C., Suárez, E., Gil, C., & Concheiro, M. (2015). Numerical study of the impact of windblown sand particles on a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 145, 87–93. https://doi.org/10.1016/j.jweia.2015.06.008
  • Raffaele, L., Beeck, J. V., & Bruno, L. (2021). Wind-sand tunnel testing of surface-mounted obstacles: Similarity requirements and a case study on a sand mitigation measure. Journal of Wind Engineering and Industrial Aerodynamics, 214, 104653. https://doi.org/10.1016/j.jweia.2021.104653
  • Sarafrazi, V., & Talaee, M. R. (2020). Simulation of wall barrier properties along a railway track during a sandstorm. Aeolian Research, 46, 100626. https://doi.org/10.1016/j.aeolia.2020.100626
  • Tan, L. H., Qu, J. J., Wang, T., Zhang, W. M., Zhao, S. P., & Wang, H. T. (2022). Vertical flux density and frequency profiles of wind-blown sand as a function of the grain size over gobi and implications for aeolian transport processes. Aeolian Research, 55, 100787. https://doi.org/10.1016/j.aeolia.2022.100787
  • Tan, L. H., Zhang, W. M., Qu, J. J., Wang, J. Z., An, Z. S., & Li, F. (2016). Aeolian sediment transport over gobi: Field studies atop the mogao grottoes, China. Aeolian Research, 21, 53–60. https://doi.org/10.1016/j.aeolia.2016.03.002
  • Tominaga, Y., Okaze, T., & Mochida, A. (2018). Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle. Journal of Wind Engineering and Industrial Aerodynamics, 182, 262–271. https://doi.org/10.1016/j.jweia.2018.09.008
  • Wang, S. M., Peng, Y., Chen, X. Z., & Wang, K. (2022a). The crack propagation and dynamic impact responses of tempered laminated glass used in high-speed trains. Engineering Failure Analysis, 134, 106024. https://doi.org/10.1016/j.engfailanal.2021.106024
  • Wang, T., Qu, J. J., & Tan, L. H. (2023). Aeolian sediment transport over sandy gobi: Field studies in the nanhu gobi along the hami-Lop Nor railway. International Soil and Water Conservation Research, 11(1), 125–134. https://doi.org/10.1016/j.iswcr.2022.03.009
  • Wang, T., Qu, J. J., Tan, L. H., Gao, Y., Zhang, K., & Shi, B. Y. (2022b). Aeolian sediment transport over the gobi with high gravel coverage under extremely strong winds in the hundred miles windy area along the lanzhou-xinjiang high-speed railway. Journal of Wind Engineering and Industrial Aerodynamics, 220, 104857. https://doi.org/10.1016/j.jweia.2021.104857
  • Xiong, H. B., Yu, W. G., Chen, D. W., & Shao, X. M. (2011). Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms. Journal of Zhejiang University-SCIENCE A, 12(12), 971–978. https://doi.org/10.1631/jzus.A11GT005
  • Yang, W. C., Yue, H., Deng, E., He, X. H., Zou, Y. F., & Wang, Y. W. (2020). Comparison of aerodynamic performance of high-speed train driving on tunnel-bridge section under fluctuating winds based on three turbulence models. Journal of Wind Engineering and Industrial Aerodynamics, 228, 105081. https://doi.org/10.1016/j.jweia.2022.105081
  • Yao, Z. Y., Xiao, J. H., & Jiang, F. Q. (2012). Characteristics of daily extreme-wind gusts along the lanxin railway in xinjiang, China. Aeolian Research, 6, 31–40. https://doi.org/10.1016/j.aeolia.2012.07.002
  • Zhang, J. Y., Zhang, M. J., & Li, Y. L. (2019). Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests. Wind and Structures, 28(4), 203–213.
  • Zhang, M. Y., Xiao, H., Mahantesh, M. N., Jin, F., & Liu, G. P. (2020). Track structure failure caused by sand deposition: Simulation and experimentation. Aeolian Research, 43, 100578. https://doi.org/10.1016/j.aeolia.2020.100578
  • Zhang, Z. H., Xiao, H., Wang, M., Zhang, M. Y., & Wang, J. Q. (2021). Research on dynamic mechanical behavior of ballast bed in windblown sand railway based on dimensional analysis. Construction and Building Materials, 278, 123052. https://doi.org/10.1016/j.conbuildmat.2021.123052