467
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Controllable generation of core-shell composite droplets in a conical inlet double-focus microchannel

, , , , &
Article: 2287206 | Received 06 Sep 2023, Accepted 19 Nov 2023, Published online: 04 Dec 2023

References

  • Abate, A. R., Thiele, J., & Weitz, D. A. (2011). One-step formation of multiple emulsions in microfluidics. Lab on a Chip, 11(2), 253–258. https://doi.org/10.1039/c0lc00236d
  • Abate, A. R., & Weitz, D. A. (2009). High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small, 5(18), 2030–2032. https://doi.org/10.1002/smll.200900569
  • Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., & Ko, S. (2015). Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chemistry, 173, 7–13. https://doi.org/10.1016/j.foodchem.2014.09.131
  • Agarwal, P., Zhao, S., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y., Yu, J., Zhang, W., & He, X. (2013). One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab on A Chip, 13(23), 4525–4533. https://doi.org/10.1039/c3lc50678a
  • Alexandridou, S., Kiparissides, C., Mange, F., & Foissy, A. (2001). Surface characterization of oil-containing polyterephthalamide microcapsules prepared by interfacial polymerization. Journal of microencapsulation, 18(6), 767–781. https://doi.org/10.1080/02652040110055243
  • Amini, Y., Ghazanfari, V., Heydari, M., Shadman, M. M., Khamseh, A. G., Khani, M. H., & Hassanvand, A. (2023a). Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device. Scientific Reports, 13(1), 9483. http://doi.org/10.1038/s41598-023-36672-6
  • Amini, Y., Hassanvand, A., Ghazanfari, V., Shadman, M. M., Heydari, M., & Alborzi, Z. S. (2023b). Optimization of liquid-liquid extraction of calcium with a serpentine microfluidic device. International Communications in Heat and Mass Transfer, 140, 106551. http://doi.org/10.1016/j.icheatmasstransfer.2022.106551
  • Amini, Y., Karimi-Sabet, J., & Nasr Esfahany, M. (2016). Experimental and numerical study of multiphase flow in new wire gauze with high capacity structured packing. Chemical Engineering and Processing: Process Intensification, 108, 35–43. https://doi.org/10.1016/j.cep.2016.07.003
  • Amini, Y., Shadman, M. M., Ghazanfari, V., & Hassanvand, A. (2023c). Enhancement of immiscible fluid mixing using passive micromixers to increase the performance of liquid-liquid extraction. International Journal of Modern Physics C. https://doi.org/10.21203/rs.3.rs-2307741/v1
  • Bandulasena, M. V., Vladisavljević, G. T., & Benyahia, B. (2019). Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing. Journal of Colloid and Interface Science, 542, 23–32. https://doi.org/10.1016/j.jcis.2019.01.119
  • Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
  • Chen, L., Gao, M., Liang, J., Wang, D., Hao, L., & Zhang, L. (2022). Lattice Boltzmann simulation of wetting gradient accelerating droplets merging and shedding on a circumferential surface. Engineering Applications of Computational Fluid Mechanics, 16(1), 1796–1812. https://doi.org/10.1080/19942060.2022.2116488
  • Chen, Y., Wu, L., & Zhang, L. (2015). Dynamic behaviors of double emulsion formation in a flow-focusing device. International Journal of Heat and Mass Transfer, 82, 42–50. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.027
  • Ge, X., Rubinstein, B. Y., He, Y., Bruce, F. O., Li, L., Leshansky, A. M., & Li, Z. (2021). Double emulsions with ultrathin shell by microfluidic step-emulsification. Lab on a Chip, 21(8), 1613–1622. https://doi.org/10.1039/D0LC01044H
  • Guadarrama-Lezama, A. Y., Dorantes-Alvarez, L., Jaramillo-Flores, M. E., Pérez-Alonso, C., Niranjan, K., Gutiérrez-López, G. F., & Alamilla-Beltrán, L. (2012). Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. Journal of Food Engineering, 112(1-2), 29–37. https://doi.org/10.1016/j.jfoodeng.2012.03.032
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Jafari, A., & Shamloo, A. (2023). CFD study of droplet formation in a cross-junction microfluidic device: investigating the impact of outflow channel design and viscosity ratio. Engineering Applications of Computational Fluid Mechanics, 17(1), 2243091. https://doi.org/10.1080/19942060.2023.2243091
  • Jafari, O., Rahimi, M., & Kakavandi, F. H. (2015). Liquid-liquid extraction in twisted micromixers. Chemical Engineering and Processing: Process Intensification, 101, 33–40. https://doi.org/10.1016/j.cep.2015.12.013
  • Kim, I., & Wu, X. L. (2010). Tunneling of micron-sized droplets through soap films. Physical Review E, 82(2), 026313. https://doi.org/10.1103/PhysRevE.82.026313
  • Leister, N., Vladisavljevi, G. T., & Karbstein, H. P. (2022). Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. Journal of Colloid and Interface Science, 611, 451–461. https://doi.org/10.1016/j.jcis.2021.12.094
  • Liu, X., Wang, C., Zhao, Y., & Chen, Y. (2018). Shear-driven two colliding motions of binary double emulsion droplets. International Journal of Heat and Mass Transfer, 121, 377–389. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.021
  • Liu, X., Wu, L., Zhao, Y., & Chen, Y. (2017). Study of compound drop formation in axisymmetric microfluidic devices with different geometries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 87–98. https://doi.org/10.1016/j.colsurfa.2017.08.026
  • Nabavi, S. A., Vladisavljević, G. T., Bandulasena, M. V., Arjmandi-Tash, O., & Manović, V. (2017b). Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Journal of Colloid and Interface Science, 505, 315–324. http://doi.org/10.1016/j.jcis.2017.05.115
  • Nabavi, S. A., Vladisavljević, G. T., Gu, S., & Ekanem, E. E. (2015). Double emulsion production in glass capillary microfluidic device: Parametric investigation of droplet generation behaviour. Chemical Engineering Science, 130, 183–196. https://doi.org/10.1016/j.ces.2015.03.004
  • Nabavi, S. A., Vladisavljević, G. T., & Manović, V. (2017a). Mechanisms and control of single-step microfluidic generation of multi-core double emulsion droplets. Chemical Engineering Journal, 322, 140–148. http://doi.org/10.1016/j.cej.2017.04.008
  • Okushima, S., Nisisako, T., Torii, T., & Higuchi, T. (2004). Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir the Acs Journal of Surfaces & Colloids, 20(23), 9905–9908. https://doi.org/10.1021/la0480336
  • Ong, W., Hua, J., Zhang, B., Teo, T., Zhuo, J., Nguyen, N., Ranganathan, N., & Yobas, L. (2007). Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry. Sensors and Actuators A: Physical, 138(1), 203–212. https://doi.org/10.1016/j.sna.2007.04.053
  • Oomen, P. E., Skolimowski, M. D., & Verpoorte, E. (2016). Implementing oxygen control in chip-based cell and tissue culture systems. Lab on A Chip, 16(18), 3394–3414. https://doi.org/10.1039/C6LC00772D
  • Pan, D., Chen, Q., Chen, S., & Li, B. (2020). Experimental study on millimeter-scale W1/O/W2 compound droplets formation in a co-flowing device with two-step structure. Chemical Engineering Science, 216, 115493. https://doi.org/10.1016/j.ces.2020.115493
  • Pan, D., Liu, M., Li, F., Chen, Q., Liu, X., Liu, Y., Zhang, Z., Huang, W., & Li, B. (2017). Formation mechanisms of solid in water in oil compound droplets in a horizontal T-junction device. Chemical Engineering Science, 176, 254–263. https://doi.org/10.1016/j.ces.2017.10.049
  • Peng, F., Wang, Z., Fan, Y., Yang, Q., & Chen, J. (2022a). Study on the interfacial dynamics of free oscillatory deformation and breakup of single-core compound droplet. Physics of Fluids, 34(4), 7. http://doi.org/10.1063/5.0087738
  • Peng, F., Wang, Z., Yang, Q., Fan, Y., & Chen, J. (2022b). Numerical simulation on free oscillation interfacial dynamics of single-core compound droplet driven by shell deformation. European Journal of Mechanics - B/Fluids, 95, 52–62. http://doi.org/10.1016/j.euromechflu.2022.04.001
  • Qian, J., & Law, C. K. (1997). Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331, 59–80. https://doi.org/10.1017/S0022112096003722
  • Sattari, A., Hanafizadeh, P., & Keshtiban, M. M. (2021a). Microfluidic preparation of double emulsions using a high aspect ratio double co-flow device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127297. http://doi.org/10.1016/j.colsurfa.2021.127297
  • Sattari, A., Tasnim, N., Hanafizadeh, P., & Hoorfar, M. (2021b). Numerical study of double emulsion droplet generation in a dual-coaxial microfluidic device using response surface methodology. Chemical Engineering and Processing - Process Intensification, 162, 108330. http://doi.org/10.1016/j.cep.2021.108330
  • Shang, L., Cheng, Y., Wang, J., Ding, H., Rong, F., Zhao, Y., & Gu, Z. (2014). Double emulsions from a capillary array injection microfluidic device. Lab on A chip, 14(18), 3489–3493. https://doi.org/10.1039/C4LC00698D
  • Shao, C., Chi, J., Shang, L., Fan, Q., & Ye, F. (2021). Droplet microfluidics-based biomedical microcarriers. Acta biomaterialia, 138, 21–33. https://doi.org/10.1016/j.actbio.2021.10.037
  • Shao, T., Feng, X., Jin, Y., & Cheng, Y. (2013). Controlled production of double emulsions in dual-coaxial capillaries device for millimeter-scale hollow polymer spheres. Chemical Engineering Science, 104, 55–63. https://doi.org/10.1016/j.ces.2013.09.001
  • Tan, S., Gao, C., Liu, H., Ye, B., & Sun, D. (2020). Research of double emulsion formation and shell-thickness influence factors in a novel six-way junction microfluidic device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601, 124917. https://doi.org/10.1016/j.colsurfa.2020.124917
  • Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., & Weitz, D. A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537–541. https://doi.org/10.1126/science.1109164
  • Visser, C. W., Kamperman, T., Karbaat, L. P., Lohse, D., & Karperien, M. (2018). In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Science Advances, 4(1), eaao1175. https://doi.org/10.1126/sciadv.aao1175
  • Vu, T. V., Homma, S., Tryggvason, G., Wells, J. C., & Takakura, H. (2013). Computations of breakup modes in laminar compound liquid jets in a coflowing fluid. International Journal of Multiphase Flow, 49, 58–69. https://doi.org/10.1016/j.ijmultiphaseflow.2012.10.004
  • Wang, N., Semprebon, C., Liu, H., Zhang, C., & Kusumaatmaja, H. (2020). Modelling double emulsion formation in planar flow-focusing microchannels. Journal of Fluid Mechanics, 895. https://doi.org/10.1017/jfm.2020.299
  • Wu, L., Liu, X., Zhao, Y., & Chen, Y. (2017). Role of local geometry on droplet formation in axisymmetric microfluidics. Chemical Engineering Science, 163, 56–67. https://doi.org/10.1016/j.ces.2017.01.022
  • Yang, S., Guo, F., Kiraly, B., Mao, X., Lu, M., Leong, K. W., & Huang, T. J. (2012). Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab on A Chip, 12(12), 2097. https://doi.org/10.1039/c2lc90046g
  • Yoshida, K., Sekine, T., Matsuzaki, F., Yanaki, T., & Yamaguchi, M. (1999). Stability of vitamin A in oil-in-water-in-oil-type multiple emulsions. Journal of the American Oil Chemists’ Society, 76(2), 1–6. https://doi.org/10.1007/s11746-999-0212-2
  • Yu, C., Wu, L., Li, L., & Liu, M. (2018). Experimental study of double emulsion formation behaviors in a one-step axisymmetric flow-focusing device. Experimental Thermal and Fluid Science, 103, 18–28. https://doi.org/10.1016/j.expthermflusci.2018.12.032
  • Yu, W., Li, B., Liu, X., & Chen, Y. (2021). Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chemical Engineering Science, 243, 116648. https://doi.org/10.1016/j.ces.2021.116648
  • Zeng, W., Li, S., & Wang, Z. (2015). Closed-loop feedback control of droplet formation in a T-junction microdroplet generator. Sensors and Actuators A: Physical, 233, 542–547. https://doi.org/10.1016/j.sna.2015.08.002
  • Zhang, T., Zou, X., Xu, L., Pan, D., & Huang, W. (2021). Numerical investigation of fluid property effects on formation dynamics of millimeter-scale compound droplets in a co-flowing device. Chemical Engineering Science, 229, 116156. https://doi.org/10.1016/j.ces.2020.116156
  • Zhou, Y., Ma, X., Wang, S., & Liu, D. (2022). Generation and evolution of double emulsions in a circular microchannel. Chemical Engineering Science, 255, 117683. https://doi.org/10.1016/j.ces.2022.117683
  • Zhu, P., & Wang, L. (2016). Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 17(1), 34–75. https://doi.org/10.1039/C6LC01018K