1,876
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Targeting cariogenic pathogens and promoting competitiveness of commensal bacteria with a novel pH-responsive antimicrobial peptide

, , , , , & show all
Article: 2159375 | Received 12 Aug 2022, Accepted 13 Dec 2022, Published online: 20 Dec 2022

References

  • Bowen WH, Burne RA, Wu H, et al. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018 Mar;26(3):229–17. PubMed PMID: WOS:000426154100009. DOI:10.1016/j.tim.2017.09.008
  • Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019 Jan;7(1). PubMed PMID: 30657107; PubMed Central PMCID: PMCPMC6615571. DOI:10.1128/microbiolspec.GPP3-0051-2018
  • Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol. 2008 Jul;190(13):4632–4640. PubMed PMID: 18441055; PubMed Central PMCID: PMCPMC2446780. DOI:10.1128/JB.00276-08
  • Huang X, Browngardt CM, Jiang M, et al. Diversity in antagonistic interactions between commensal oral streptococci and streptococcus mutans. Caries Res. 2018;52(1–2):88–101. PubMed PMID: 29258070; PubMed Central PMCID: PMCPMC5828942. DOI:10.1159/000479091
  • Philip N, Suneja B, Walsh LJ. Ecological approaches to dental caries prevention: paradigm shift or shibboleth? [Conference paper]. Caries Res. 2018;52(1–2):153–165.
  • Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017 Dec;15(12):740–755. PubMed PMID: 28944770; PubMed Central PMCID: PMCPMC5685531. DOI:10.1038/nrmicro.2017.99
  • Liu Y, Ren Z, Hwang G, et al. Therapeutic strategies targeting cariogenic biofilm microenvironment. Adv Dent Res. 2018 Feb;29(1):86–92. PubMed PMID: 29355421; PubMed Central PMCID: PMCPMC5784482. DOI:10.1177/0022034517736497
  • Zhao Z, Ding C, Wang Y, et al. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomater Sci. 2019 Mar 26;7(4):1643–1651. PubMed PMID: 30723851. DOI:10.1039/c8bm01640b
  • Lu Y, Aimetti AA, Langer R, et al. Bioresponsive materials. Nature Rev Mater. 2016 Oct 25;2(1):16075. DOI:10.1038/natrevmats.2016.75.
  • Xiong M, Bao Y, Xu X, et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12675–12680. PubMed PMID: 29133389; PubMed Central PMCID: PMCPMC5715757. DOI:10.1073/pnas.1710408114
  • Wu H, Zhu L, VP T. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 2013 Jan;34(4):1213–1222. PubMed PMID: 23102622; PubMed Central PMCID: PMCPMC3587181. DOI:10.1016/j.biomaterials.2012.08.072
  • Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015 Jul 1;43(W1):W174–81. PubMed PMID: 25883148; PubMed Central PMCID: PMCPMC4489253. DOI:10.1093/nar/gkv342
  • Wang Y, Fan Y, Zhou Z, et al. De Novo synthetic short antimicrobial peptides against cariogenic bacteria [Article]. Arch Oral Biol. 2017;80:41–50.
  • Otto CC, Cunningham TM, Hansen MR, et al. Effects of antibacterial mineral leachates on the cellular ultrastructure, morphology, and membrane integrity of Escherichia coli and methicillin-resistant Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2010 Sep 16;9:26. PubMed PMID: 20846374; PubMed Central PMCID: PMCPMC2949790. DOI:10.1186/1476-0711-9-26
  • Joycharat N, Thammavong S, Limsuwan S, et al. Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch Pharm Res. 2013 Jun;36(6):723–730. PubMed PMID: 23479194. DOI:10.1007/s12272-013-0085-7
  • Jiang W, Luo J, Wang Y, et al. The pH-responsive property oF antimicrobial peptide GH12 enhances its anticaries effects at acidic pH. Caries Res. 2021;55(1):21–31. PubMed PMID: 33341803. DOI:10.1159/000508458
  • Luo J, Feng Z, Jiang W, et al. Novel lactotransferrin-derived synthetic peptides suppress cariogenic bacteria in vitro and arrest dental caries in vivo: [Novel lactotransferrin-derived anticaries peptides]. J Oral Microbiol. 2021;13(1):1943999. PubMed PMID: 34234894; PubMed Central PMCID: PMCPMC8216265. DOI:10.1080/20002297.2021.1943999
  • Huang ZB, Shi X, Mao J, et al. Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Sci Rep. 2016 Dec 2;6:38410. PubMed PMID: 27910930; PubMed Central PMCID: PMCPMC5133556. DOI:10.1038/srep38410
  • Zhang K, Du Y, Si Z, et al. Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nat Commun. 2019 Oct 21;10(1):4792. PubMed PMID: 31636263; PubMed Central PMCID: PMCPMC6803644. DOI:10.1038/s41467-019-12702-8
  • Akhoundsadegh N, Belanger CR, Hancock REW. Outer membrane interaction kinetics of new polymyxin B analogs in gram-negative bacilli. Antimicrob Agents Chemother. 2019 Oct;63(10): PubMed PMID: 31332075; PubMed Central PMCID: PMCPMC6761527. DOI:10.1128/AAC.00935-19
  • Rodrigues de Almeida N, Han Y, Perez J, et al. Design, synthesis, and nanostructure-dependent antibacterial activity of cationic peptide amphiphiles. ACS Appl Mater Interfaces. 2019 Jan 23;11(3):2790–2801. PubMed PMID: 30588791; PubMed Central PMCID: PMCPMC7199185. DOI:10.1021/acsami.8b17808
  • Shukla PS, Agarwal P, Gupta K, et al. Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB Plants. 2015 May 17;7. PubMed PMID: 25986050; PubMed Central PMCID: PMCPMC4497479. DOI:10.1093/aobpla/plv054
  • D’Ercole S, De Angelis F, Biferi V, et al. Antibacterial and antibiofilm properties of three resin-based dental composites against streptococcus mutans. Materials. 2022 Mar 3;15(5). PubMed PMID: 35269121; PubMed Central PMCID: PMCPMC8911767. 10.3390/ma15051891
  • Jiang W, Wang Y, Luo J, et al. Effects of antimicrobial peptide GH12 on the cariogenic properties and composition of a cariogenic multispecies Biofilm. Appl Environ Microbiol. 2018 Dec 15;84(24). PubMed PMID: 30341079; PubMed Central PMCID: PMCPMC6275336. 10.1128/AEM.01423-18
  • Lencova S, Svarcova V, Stiborova H, et al. Bacterial biofilms on polyamide nanofibers: factors influencing biofilm formation and evaluation. ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2277–2288. PubMed PMID: 33284019. DOI:10.1021/acsami.0c19016
  • Wang Y, Wang X, Jiang W, et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J Oral Microbiol. 2018;10(1):1442089. PubMed PMID: 29503706; PubMed Central PMCID: PMCPMC5827641. DOI:10.1080/20002297.2018.1442089
  • Buckingham SD, Partridge FA, Poulton BC, et al. Automated phenotyping of mosquito larvae enables high-throughput screening for novel larvicides and offers potential for smartphone-based detection of larval insecticide resistance. PLoS Negl Trop Dis. 2021 Jun;15(6):e0008639. PubMed PMID: 34081710; PubMed Central PMCID: PMCPMC8205174. DOI:10.1371/journal.pntd.0008639
  • Gao L, Liu Y, Kim D, et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 2016 Sep;101:272–284. PubMed PMID: 27294544; PubMed Central PMCID: PMCPMC4949957. DOI:10.1016/j.biomaterials.2016.05.051
  • Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol. 2010 Oct 15;5(10):905–917. PubMed PMID: 20698568; PubMed Central PMCID: PMCPMC2955829. DOI:10.1021/cb1001558
  • Kacprzyk L, Rydengard V, Morgelin M, et al. Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta. 2007 Nov;1768(11):2667–2680. PubMed PMID: 17655823. DOI:10.1016/j.bbamem.2007.06.020
  • Xu XD, Chu YF, Chen CS, et al. Facile construction of nanofibers as a functional template for surface boron coordination reaction. Small. 2011 Aug 8;7(15):2201–2209. PubMed PMID: 21728226. DOI:10.1002/smll.201002097
  • Luo Y, Song Y. Mechanism of Antimicrobial Peptides: antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci. 2021 Oct 22;22(21):11401. PubMed PMID: 34768832; PubMed Central PMCID: PMCPMC8584040. DOI:10.3390/ijms222111401
  • Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;451:69–86. PubMed PMID: 21346355; PubMed Central PMCID: PMCPMC3068567. 10.1159/000324598
  • Shankar M, Mohapatra SS, Biswas S, et al. Gene regulation by the liasr two-component system in streptococcus mutans. PLoS ONE. 2015;10(5):e0128083. PubMed PMID: 26020679; PubMed Central PMCID: PMCPMC4447274.
  • Zeng L, Farivar T, Burne RA. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms. Appl Environ Microbiol. 2016 Jun 15;82(12):3671–3682. PubMed PMID: 27084009; PubMed Central PMCID: PMCPMC4959161. DOI:10.1128/AEM.00637-16
  • Zheng L, Itzek A, Chen Z, et al. Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol. 2011 Jul;77(13):4318–4328. PubMed PMID: 21571883; PubMed Central PMCID: PMCPMC3127700. DOI:10.1128/AEM.00309-11
  • Wiradharma N, Khoe U, Hauser CA, et al. Synthetic cationic amphiphilic alpha-helical peptides as antimicrobial agents. Biomaterials. 2011 Mar;32(8):2204–2212. PubMed PMID: 21168911. DOI:10.1016/j.biomaterials.2010.11.054
  • Wang J, Chou S, Xu L, et al. High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric alpha-helical peptides with gly-gly pairs. Sci Rep. 2015 Nov 4;5:15963. PubMed PMID: 26530005; PubMed Central PMCID: PMCPMC4632126. DOI:10.1038/srep15963
  • Wang X, Junior JCB, Mishra B, et al. Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes. Biochim Biophys Acta Biomembr. 2017 Aug;1859(8):1350–1361. PubMed PMID: 28450045; PubMed Central PMCID: PMCPMC5516960. DOI:10.1016/j.bbamem.2017.04.018
  • Huo L, Huang X, Ling J, et al. Selective activities of STAMPs against Streptococcus mutans. Exp Ther Med. 2018 Feb;15(2):1886–1893. PubMed PMID: 29434779; PubMed Central PMCID: PMCPMC5776616. DOI:10.3892/etm.2017.5631
  • Guo L, McLean JS, Yang Y, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7569–7574. PubMed PMID: 26034276; PubMed Central PMCID: PMCPMC4475959. DOI:10.1073/pnas.1506207112
  • Xiang SW, Shao J, He J, et al. A membrane-targeted peptide inhibiting PtxA oF phosphotransferase system blocks streptococcus mutans [Article]. Caries Res. 2019;53(2):176–193.
  • Eriksson L, Lif Holgerson P, Esberg A, et al. Microbial complexes and caries in 17-year-olds with and without streptococcus mutans [Article]. J Dent Res. 2018;97(3):275–282. DOI:10.1177/0022034517731758
  • Simon-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015 Feb;23(2):76–82. PubMed PMID: 25435135. DOI:10.1016/j.tim.2014.10.010
  • Huang Y, Liu Y, Shah S, et al. Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Biomaterials 2021 Jan;268:120581. PubMed PMID: 33302119; PubMed Central PMCID: PMCPMC8182968. DOI:10.1016/j.biomaterials.2020.120581
  • Sayem SM, Manzo E, Ciavatta L, et al. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 2011 Sep 27;10:74. PubMed PMID: 21951859; PubMed Central PMCID: PMCPMC3196911. DOI:10.1186/1475-2859-10-74
  • Feng Z, Luo J, Lyu X, et al. Selective antibacterial activity of a novel lactotransferrin-derived antimicrobial peptide LF-1 against streptococcus mutans. Arch Oral Biol. 2022 Jul;139:105446. PubMed PMID: 35512618. DOI:10.1016/j.archoralbio.2022.105446
  • Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev. 2018 Feb;54(1):22–29. PubMed PMID: 29628998; PubMed Central PMCID: PMCPMC5884221. DOI:10.1016/j.jdsr.2017.08.002
  • Abranches J, Zeng L, Kajfasz JK, et al. Biology of oral streptococci. Microbiol Spectr. 2018 Oct;6(5). PubMed PMID: 30338752; PubMed Central PMCID: PMCPMC6287261. DOI:10.1128/microbiolspec.GPP3-0042-2018.
  • Senadheera DB, Cordova M, Ayala EA, et al. Regulation of bacteriocin production and cell death by the VicRK signaling system in streptococcus mutans. J Bacteriol. 2012 Mar;194(6):1307–1316. PubMed PMID: 22228735; PubMed Central PMCID: PMCPMC3294852. DOI:10.1128/JB.06071-11
  • van der Ploeg JR. Regulation of bacteriocin production in streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol. 2005 Jun;187(12):3980–3989. PubMed PMID: 15937160; PubMed Central PMCID: PMCPMC1151730. DOI:10.1128/JB.187.12.3980-3989.2005
  • Suntharalingam P, Senadheera MD, Mair RW, et al. The LiaFSR system regulates the cell envelope stress response in streptococcus mutans. J Bacteriol. 2009 May;191(9):2973–2984. PubMed PMID: 19251860; PubMed Central PMCID: PMCPMC2681809. DOI:10.1128/JB.01563-08