1,288
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Growth of Porphyromonas gingivalis on human serum albumin triggers programmed cell death

Article: 2161182 | Received 07 Nov 2022, Accepted 19 Dec 2022, Published online: 22 Dec 2022

References

  • Demmer RT, Desvarieux M. Periodontal infections and cardiovascular disease: the heart of the matter. J Am Dent Assoc. 2006. 137: Suppl:14S20S; quiz 38S. : Suppl:14S20S; quiz 38S. 10.14219/jada.archive.2006.0402.
  • Lundberg K, Wegner N, Yucel-Lindberg T, et al. Periodontitis in RA-the citrullinated enolase connection. Nat Rev Rheumatol. 2010;6:727–13.
  • Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer’s disease? J Oral Microbiol. 2015;7:29143.
  • Dahlen G, Basic A, Bylund J. Importance of virulence factors for the persistence of oral bacteria in the inflamed gingival crevice and in the pathogenesis of periodontal disease. J Clin Med. 2019;8:1339.
  • Kolenbrander PE, Palmer RJ, Periasamy S, et al. Oral multispecies biofilm development and the key role of cell-cell distance. Nature rev Microbiol. 2010;8:471–480.
  • Genco CA, Cutler CW, Kapczynski D, et al. A novel mouse model to study the virulence of and host response to Porphyromonas (Bacteroides) gingivalis. Infect Immun. 1991;59:1255–1263.
  • Mendez KN, Hoare A, Soto C, et al. Variability in genomic and virulent properties of Porphyromonas gingivalis strains isolated from healthy and severe chronic periodontitis individuals. Front Cell Infect Microbiol. 2019;9:246.
  • Chen T, Siddiqui H, Olsen I. Comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.
  • Davey ME, Duncan MJ. Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J bacteriol. 2006;188:5510–5523.
  • Yoshino T, Laine ML, van Winkelhoff AJ, et al. Genotype variation and capsular serotypes of Porphyromonas gingivalis from chronic periodontitis and periodontal abscesses. FEMS Microbiol Lett. 2007;270:75–81.
  • Nadkarni MA, Chhour KL, Chapple CC, et al. The profile of Porphyromonas gingivalis kgp biotype and fimA genotype mosaic in subgingival plaque samples. FEMS Microbiol Lett. 2014;361:190–194.
  • Potempa J, Pike R, Travis J. Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem. 1997;378. DOI:10.1515/bchm.1997.378.3-4.223
  • Shah HN, Williams RAD. Utilization of glucose and amino acids by Bacteroides intermedius and Bacteroides gingivalis. Curr Microbiol. 1987;15:241–246.
  • Mayrand D, Holt SC. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol Rev. 1988;52:134–152.
  • Takahashi N, Sato T, Yamada T. Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J bacteriol. 2000;182:4704–4710.
  • Khurshid Z, Mali M, Naseem M, et al. Human Gingival Crevicular Fluids (GCF) proteomics: an overview. Dent J (Basel). 2017;5(1):12.
  • Kowashi Y, Jaccard F, Cimasoni G. Sulcular polymorphonuclear leucocytes and gingival exudate during experimental gingivitis in man. J Periodontal Res. 1980;15:151–158.
  • Grenier D, Imbeault S, Plamondon P, et al. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun. 2001;69:5166–5172.
  • Milner P, Batten JE, Curtis MA. Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for alpha-ketoglutarate. FEMS Microbiol Lett. 1996;140:125–130.
  • Moradali MF, Davey ME. Metabolic plasticity enables lifestyle transitions of Porphyromonas gingivalis. NPJ Biofilms Microbiomes. 2021;7:1–13.
  • Paquette RL, Berenson J, Lichtenstein A, et al. Oncogenes in multiple myeloma: point mutation of N-ras. Oncogene. 1990;5:1659–1663.
  • Chen T, Hosogi Y, Nishikawa K, et al. Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis. J bacteriol. 2004;186:5473–5479.
  • Scheurwater E, Reid CW, Clarke AJ. Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol. 2008;40:586–591.
  • Kim H-M, Ranjit DK, Walker AR, et al. A novel regulation of K-antigen capsule synthesis in Porphyromonas gingivalis is driven by the response regulator PG0720-directed antisense RNA. Front Oral Health. 2021;2. DOI:10.3389/froh.2021.701659
  • Moradali MF, Ghods S, Angelini TE, et al. Amino acids as wetting agents: surface translocation by Porphyromonas gingivalis. Isme J. 2019;13:1560–1574.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079.
  • Anders S, Pyl PT, Huber W. Htseq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140.
  • McClure R, Balasubramanian D, Sun Y, et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 2013;41:e140.
  • Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.
  • Caspi R, Altman T, Billington R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014;42:D459–71.
  • Caspi R, Billington R, Ferrer L, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44:D471–80.
  • Park YH, Lee CR, Choe M, et al. Hpr antagonizes the anti-sigma70 activity of Rsd in Escherichia coli. Proc Natl Acad Sci U S A. 2013;110:21142–21147.
  • Kim HM, Park YH, Yoon CK, et al. Histidine phosphocarrier protein regulates pyruvate kinase a activity in response to glucose in Vibrio vulnificus. Mol Microbiol. 2015;96:293–305.
  • Priyadarshini R, Cugini C, Arndt A, et al. The nucleoid-associated protein HUbeta affects global gene expression in Porphyromonas gingivalis. Microbiology. 2013;159:219–229.
  • Gelamo EL, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56:2255–2271.
  • Majorek KA, Porebski PJ, Dayal A, et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol. 2012;52:174–182.
  • Igboin CO, Griffen AL, Leys EJ. Porphyromonas gingivalis strain diversity. J Clin Microbiol. 2009;47:3073–3081.
  • Kim HM, Davey ME. Synthesis of ppGpp impacts type IX secretion and biofilm matrix formation in Porphyromonas gingivalis. NPJ Biofilms Microbiomes. 2020;6:5.
  • Mydel P, Takahashi Y, Yumoto H, et al. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection. PLOS Pathogens. 2006;2:e76.
  • Sztukowska M, Bugno M, Potempa J, et al. Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol. 2002;44:479–488.
  • Hasegawa Y, Nishiyama S, Nishikawa K, et al. A novel type of two-component regulatory system affecting gingipains in Porphyromonas gingivalis. Microbiol Immunol. 2003;47:849–858.
  • Hirano T, Beck DA, Wright CJ, et al. Regulon controlled by the GppX hybrid two component system in Porphyromonas gingivalis. Mol Oral Microbiol. 2013;28:70–81.
  • Moye ZD, Valiuskyte K, Dewhirst FE, et al. Synthesis of sphingolipids impacts survival of Porphyromonas gingivalis and the presentation of surface polysaccharides. Front Microbiol. 2016;7:1919.
  • Stankeviciute G, Guan Z, Goldfine H, et al. Caulobacter crescentus adapts to phosphate starvation by synthesizing anionic glycoglycerolipids and a novel glycosphingolipid. MBio. 2019;10. DOI:10.1128/mBio.00107-19
  • Madej M, White JBR, Nowakowska Z, et al. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol. 2020;5:1016–1025.
  • Vermilyea DM, Moradali MF, Kim H-M, et al. PPAD activity promotes outer membrane vesicle biogenesis and surface translocation by Porphyromonas gingivalis. J bacteriol. 2020. 203: e00343-20. 10.1128/JB.00343-20.
  • Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000. 2010;52:94–116.
  • Scott JC, Klein BA, Duran-Pinedo A, et al. A two-component system regulates hemin acquisition in Porphyromonas gingivalis. PLoS ONE. 2013;8:e73351.
  • Allocati N, Masulli M, Di Ilio C, et al. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 2015;6:e1609.
  • Voulhoux R, Bos MP, Geurtsen J, et al. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science. 2003;299:262–265.
  • Potter AJ, Paton JC. Spermidine biosynthesis and transport modulate pneumococcal autolysis. J bacteriol. 2014;196:3556–3561.
  • Beaume M, Hernandez D, Farinelli L, et al. Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS ONE. 2010;5:e10725.
  • Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet. 2010;44:167–188.
  • Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harbor Perspect Biol. 2011;3:a003798.
  • Lasa I, Toledo-Arana A, Dobin A, et al. Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci USA. 2011;108:20172–20177.
  • Saberi F, Kamali M, Najafi A, et al. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cell Mol Biol Lett. 2016;21:6.
  • Eckweiler D, Häussler S. Antisense transcription in Pseudomonas aeruginosa. Microbiology (Reading). 2018;164:889–895.
  • Nicolas P, Mäder U, Dervyn E, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012;335:1103–1106.
  • J-I H, Hamada N, Kuramitsu HK. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS Microbiol Lett. 2002;216:217–222.
  • Kamaguchi A, Nakano M, Shoji M, et al. Autolysis of Porphyromonas gingivalis is accompanied by an increase in several periodontal pathogenic factors in the supernatant. Microbiol Immunol. 2004;48:541–545.
  • Dashper SG, Ang CS, Veith PD, et al. Response of Porphyromonas gingivalis to heme limitation in continuous culture. J bacteriol. 2009;191:1044–1055.
  • Olczak T, Sosicka P, Olczak M. HmuY is an important virulence factor for Porphyromonas gingivalis growth in the heme-limited host environment and infection of macrophages. Biochem Biophys Res Commun. 2015;467:748–753.
  • García CA, Alcaraz ES, Franco MA, et al. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol. 2015;6:926.
  • Xie H, Zheng C, Bäumler AJ. OxyR activation in Porphyromonas gingivalis in response to a hemin-limited environment. Infect Immun. 2012;80:3471–3480.
  • Hernández JA, Muro-Pastor AM, Flores E, et al. Identification of a furA cis antisense RNA in the Cyanobacterium Anabaena sp. PCC 7120. J Mol Biol. 2006;355:325–334.
  • Cornelis P, Wei Q, Andrews SC, et al. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics. 2011;3:540–549.
  • Gottschlich L, Geiser P, Bortfeld-Miller M, et al. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci Rep. 2019;9:9404.