1,634
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Saliva microbiome alterations in dental fluorosis population

, , , , , , , , , , , , & ORCID Icon show all
Article: 2180927 | Received 11 Aug 2022, Accepted 12 Feb 2023, Published online: 20 Feb 2023

References

  • Dehnen S, Schafer LL, Lectka T, et al. Fluorine: a very special element and its very special impacts on chemistry. J Org Chem. 2021;86:16213–11.
  • Li Q, Shen J, Qin T, et al. A qualitative and comprehensive analysis of caries susceptibility for dental fluorosis patients. Antibiotics (Basel). 2021;10:1047.
  • Qiao L, Liu X, He Y, et al. Progress of signaling pathways, stress pathways and epigenetics in the pathogenesis of skeletal fluorosis. Int J Mol Sci. 2021;22:11932.
  • Simangwa LD, Astrom AN, Johansson A, et al. Oral diseases and oral health related behaviors in adolescents living in Maasai population areas of Tanzania: a cross-sectional study. BMC Pediatr. 2019;19:275.
  • Michel-Crosato E, Raggio DP, Coloma-Valverde ANJ, et al. Oral health of 12-year-old children in Quito, Ecuador: a population-based epidemiological survey. BMC Oral Health. 2019;19:184.
  • Rojanaworarit C, Claudio L, Howteerakul N, et al. Hydrogeogenic fluoride in groundwater and dental fluorosis in Thai agrarian communities: a prevalence survey and case-control study. BMC Oral Health. 2021;21:545.
  • Garcia-Perez A, Perez-Perez NG, Flores-Rojas AI, et al. Marginalization and fluorosis its relationship with dental caries in rural children in Mexico: a cross-sectional study. Community Dent Health. 2020;37:216–222.
  • Liu JZ, Bao R, Chen C, et al. The occurrence, severity degree, and associated risk factors of dental fluorosis among the 12-year-old schoolchildren in Jilin, China. Medicine (Baltimore). 2021;100:e23820.
  • Li Q, Zhao ZJ. Prevalence of brick tea-type fluorosis in children aged 8-12 years in Qinghai Province, China. Biomed Environ Sci. 2021;34:334–336.
  • Liu X, Huang R, Gao Y, et al. Calcium mitigates fluoride-induced kallikrein 4 inhibition via PERK/eIf2alpha/ATF4/CHOP endoplasmic reticulum stress pathway in ameloblast-lineage cells. Arch Oral Biol. 2021;125:105093.
  • Zhou X, Chen Z, Zhong W, et al. Effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. Hum Exp Toxicol. 2019;38:833–845.
  • Aulestia FJ, Groeling J, Bomfim GHS, et al. Fluoride exposure alters Ca(2+) signaling and mitochondrial function in enamel cells. Sci Signal. 2020;13. DOI:10.1126/scisignal.aay0086.
  • Suzuki M, Bandoski C, Bartlett JD. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med. 2015;89:369–378.
  • DenBesten P, Li W. Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci. 2011;22:81–96.
  • Narayanan R, Prabhuji MLV, Paramashivaiah R, et al. Low-level laser therapy in combination with desensitising agent reduces dentin hypersensitivity in fluorotic and non-fluorotic teeth - a randomised, controlled, double-blind clinical trial. Oral Health Prev Dent. 2019;17:547–556.
  • Trakiniene G, Petraviciute G, Smailiene D, et al. Impact of fluorosis on the tensile bond strength of metal brackets and the prevalence of enamel microcracks. Sci Rep. 2019;9:5957.
  • Molina-Frechero N, Nevarez-Rascon M, Nevarez-Rascon A, et al. Impact of dental fluorosis, socioeconomic status and self-perception in adolescents exposed to a high level of fluoride in water. Int J Environ Res Public Health. 2017;14:73.
  • Yani SI, Seweng A, Mallongi A, et al. The influence of fluoride in drinking water on the incidence of fluorosis and intelligence of elementary school students in Palu City. Gac Sanit. 2021;35(Suppl 2):S159–63. DOI:10.1016/j.gaceta.2021.07.010
  • Strunecka A, Strunecky O. Chronic fluoride exposure and the risk of autism spectrum disorder. Int J Environ Res Public Health. 2019;16:3431.
  • Yu H, Zhang Y, Zhang P, et al. Effects of fluorine on intestinal structural integrity and microbiota composition of common carp. Biol Trace Elem Res. 2021;199:3489–3496.
  • Zhong N, Ma Y, Meng X, et al. Effect of fluoride in drinking water on fecal microbial community in rats. Biol Trace Elem Res. 2022;200:238–246.
  • Pathak JL, Yan Y, Zhang Q, et al. The role of oral microbiome in respiratory health and diseases. Respir med. 2021;185:106475.
  • Wang Q, Chen X, Hu H, et al. Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fluorosis. Sci Rep. 2021;11:2897.
  • Zhou Y, Chen DR, Zhi QH, et al. The prevalence and associated risk indicators of dental fluorosis in china: findings from the 4th national oral health survey. Chin J Dent Res. 2018;21:205–211.
  • Dong H, Yang X, Zhang S, et al. Associations of low level of fluoride exposure with dental fluorosis among U.S. children and adolescents, NHANES 2015-2016. Ecotoxicol Environ Saf. 2021;221:112439.
  • Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200:525–540.
  • He L, Zhou X, Liu Y, et al. Fecal miR-142a-3p from dextran sulfate sodium-challenge recovered mice prevents colitis by promoting the growth of Lactobacillus reuteri. Mol Ther. 2022;30:388–399.
  • Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963.
  • Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583.
  • Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857.
  • Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
  • Douglas GM, Maffei VJ, Zaneveld JR, et al. Picrust2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–688.
  • White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5:e1000352.
  • Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67:120–127.
  • Kageyama Y, Shimokawa Y, Kawauchi K, et al. Dysbiosis of oral microbiota associated with palmoplantar pustulosis. Dermatology. 2021;237:347–356.
  • Wang J, Qian T, Jiang J, et al. Gut microbial profile in biliary atresia: a case-control study. J Gastroenterol Hepatol. 2020;35:334–342.
  • Bobin-Dubigeon C, Luu HT, Leuillet S, et al. Faecal microbiota composition varies between patients with breast cancer and healthy women: a comparative case-control study. Nutrients. 2021;13:2705.
  • Yu FY, Wang QQ, Li M, et al. Dysbiosis of saliva microbiome in patients with oral lichen planus. BMC Microbiol. 2020;20:75.
  • Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med. 2019;17:225.
  • De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195:74–85.
  • Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353–380.
  • Becker MR, Paster BJ, Leys EJ, et al. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40:1001–1009.
  • Marchant S, Brailsford SR, Twomey AC, et al. The predominant microflora of nursing caries lesions. Caries Res. 2001;35:397–406.
  • Giacaman RA, Torres S, Gomez Y, et al. Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults. Arch Oral Biol. 2015;60:154–159.
  • AlEraky DM, Madi M, El Tantawi M, et al. Predominance of non-Streptococcus mutans bacteria in dental biofilm and its relation to caries progression. Saudi J Biol Sci. 2021;28:7390–7395.
  • Hu D, Gong J, He B, et al. Surface properties and Streptococcus mutans - Streptococcus sanguinis adhesion of fluorotic enamel. Arch Oral Biol. 2021;121:104970.
  • Vandana KL, Reddy MS. Assessment of periodontal status in dental fluorosis subjects using community periodontal index of treatment needs. Indian J Dent Res. 2007;18:67–71.
  • Singh P, Gupta ND, Bey A. Dental fluorosis and periodontium: a game of shadows? J Oral Biol Craniofac Res. 2014;4:47–48.
  • Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol. 2020;83:14–25.
  • Huda SA, Yadava S, Kahlown S, et al. A rare case of ventilator-associated pneumonia caused by Cupriavidus Pauculus. Cureus. 2020;12:e8573.
  • Almasy E, Szederjesi J, Rad P, et al. A fatal case of community acquired Cupriavidus Pauculus Pneumonia. J Crit Care Med (Targu Mures). 2016;2:201–204.
  • Yahya R, Alyousef W, Omara A, et al. First case of pneumonia caused by Cupriavidus pauculus in an infant in the gulf cooperation council. J Infect Dev Ctries. 2017;11:196–198.
  • Wallet F, Tachon M, Nseir S, et al. Vibrio metschnikovii pneumonia. Emerg Infect Dis. 2005;11:1641–1642.
  • Ramanathan A, Gordon SM, Shrestha NK. A case series of patients with Gemella endocarditis. Diagn Microbiol Infect Dis. 2020;97:115009.
  • Ortiz S, Herrman E, Lyashenko C, et al. Sex-specific differences in the salivary microbiome of caries-active children. J Oral Microbiol. 2019;11:1653124.
  • Nearing JT, DeClercq V, Van Limbergen J, et al. Assessing the variation within the oral microbiome of healthy adults. mSphere. 2020;5. DOI:10.1128/mSphere.00451-20
  • Dashper SG, Reynolds EC. Lactic acid excretion by Streptococcus mutans. Microbiology (Reading). 1996;142:33–39.
  • Zeng L, Chakraborty B, Farivar T, et al. Coordinated regulation of the EII(Man) and fruRKI Operons of Streptococcus mutans by global and fructose-specific pathways. Appl Environ Microbiol. 2017;83. DOI:10.1128/AEM.01403-17
  • Klein MI, DeBaz L, Agidi S, et al. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS ONE. 2010;5:e13478.
  • Abranches J, Zeng L, Kajfasz JK, et al. Biology of Oral Streptococci. Microbiol Spectr. 2018;6. DOI:10.1128/microbiolspec.GPP3-0042-2018.
  • Li J, Huang Z, Mei L, et al. Anti-caries effect of arginine-containing formulations in vivo: a systematic review and meta-analysis. Caries Res. 2015;49:606–617.
  • Fulde M, Willenborg J, de Greeff A, et al. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology (Reading). 2011;157:572–582.
  • Maas WK. The arginine repressor of Escherichia coli. Microbiol Rev. 1994;58:631–640.
  • Jing M, Zheng T, Gong T, et al. AhrC negatively regulates Streptococcus mutans arginine biosynthesis. Microbiol Spectr. 2022;10:e0072122.