2,080
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Role of Enterococcus faecalis in refractory apical periodontitis: from pathogenicity to host cell response

, , &
Article: 2184924 | Received 03 Jun 2022, Accepted 21 Feb 2023, Published online: 01 Mar 2023

References

  • Tiburcio-Machado CS, Michelon C, Zanatta FB, et al. The global prevalence of apical periodontitis: a systematic review and meta-analysis. Int Endod J. 2021;54(5):712–15. DOI:10.1111/iej.13467
  • Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J. 2006;39(4):249–281.
  • Yu VS, Khin LW, Hsu CS, et al. Risk score algorithm for treatment of persistent apical periodontitis. J Dent Res. 2014;93(11):1076–1082. DOI:10.1177/0022034514549559
  • Bronzato JD, Davidian MES, de Castro M, et al. Bacteria and virulence factors in periapical lesions associated with teeth following primary and secondary root canal treatment. Int Endod J. 2021;54(5):660–671. DOI:10.1111/iej.13457
  • Barbosa-Ribeiro M, Arruda-Vasconcelos R, Louzada LM, et al. Microbiological analysis of endodontically treated teeth with apical periodontitis before and after endodontic retreatment. Clin Oral Investig. 2021;25(4):2017–2027. DOI:10.1007/s00784-020-03510-2
  • Gomes B, Francisco PA, Godoi EP Jr., et al. Identification of culturable and nonculturable microorganisms, lipopolysaccharides, and lipoteichoic acids from root canals of teeth with endodontic failure. J Endod. 2021;47(7):1075–1086. DOI:10.1016/j.joen.2021.04.011
  • Gomes BP, Pinheiro ET, Jacinto RC, et al. Microbial analysis of canals of root-filled teeth with periapical lesions using polymerase chain reaction. J Endod. 2008;34(5):537–540. DOI:10.1016/j.joen.2008.01.016
  • Johnson EM, Flannagan SE, Sedgley CM. Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis. J Endod. 2006;32(10):946–950.
  • Sedgley C, Nagel A, Dahlen G, et al. Real-time quantitative polymerase chain reaction and culture analyses of Enterococcus faecalis in root canals. J Endod. 2006;32(3):173–177. DOI:10.1016/j.joen.2005.10.037
  • Zhang C, Du J, Peng Z. Correlation between Enterococcus faecalis and persistent intraradicular infection compared with primary intraradicular infection: a systematic review. J Endod. 2015;41(8):1207–1213.
  • Fan W, Huang Z, Fan B. Effects of prolonged exposure to moderate static magnetic field and its synergistic effects with alkaline pH on Enterococcus faecalis. Microb Pathog. 2018;115:117–122.
  • Liu H, Wei X, Ling J, et al. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod. 2010;36(4):630–635. DOI:10.1016/j.joen.2009.11.016
  • Chivatxaranukul P, Dashper SG, Messer HH. Dentinal tubule invasion and adherence by Enterococcus faecalis. Int Endod J. 2008;41(10):873–882.
  • Ponce JB, Midena RZ, Pinke KH, et al. In vitro treatment of Enterococcus faecalis with calcium hydroxide impairs phagocytosis by human macrophages. Acta Odontol Scand. 2019;77(2):158–163. DOI:10.1080/00016357.2018.1533142
  • Zhang C, Yang Z, Hou B. Diverse bacterial profile in extraradicular biofilms and periradicular lesions associated with persistent apical periodontitis. Int Endod J. 2021;54(9):1425–1433.
  • Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2002;2(3):171–179.
  • Fabretti F, Theilacker C, Baldassarri L, et al. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun. 2006;74(7):4164–4171. DOI:10.1128/IAI.00111-06
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–455.
  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–6440. DOI:10.1002/jcp.26429
  • Hasegawa T, Venkata Suresh V, Yahata Y, et al. Inhibition of the CXCL9-CXCR3 axis suppresses the progression of experimental apical periodontitis by blocking macrophage migration and activation. Sci Rep. 2021;11(1):2613. DOI:10.1038/s41598-021-82167-7
  • Hou K-L, Lin S-K, Kok S-H, et al. Increased expression of glutaminase in osteoblasts promotes macrophage recruitment in periapical lesions. J Endod. 2017;43(4):602–608. DOI:10.1016/j.joen.2016.11.005
  • Lin SK, Hong CY, Chang HH, et al. Immunolocalization of macrophages and transforming growth factor-beta 1 in induced rat periapical lesions. J Endod. 2000;26(6):335–340. DOI:10.1097/00004770-200006000-00007
  • Weber M, Schlittenbauer T, Moebius P, et al. Macrophage polarization differs between apical granulomas, radicular cysts, and dentigerous cysts. Clin Oral Investig. 2018;22(1):385–394. DOI:10.1007/s00784-017-2123-1
  • Veloso P, Fernández A, Terraza-Aguirre C, et al. Macrophages skew towards M1 profile through reduced CD163 expression in symptomatic apical periodontitis. Clin Oral Investig. 2020;24(12):4571–4581. DOI:10.1007/s00784-020-03324-2
  • Martin T, Gooi JH, Sims NA. Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr. 2009;19(1):73–88.
  • Guo J, Wang Z, Weng Y, et al. N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium. Cell Signal. 2020;75:109740.
  • Luo X, Wan Q, Cheng L, et al. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol. 2022;12:908859.
  • Francisco PA, Fagundes P, Lemes-Junior JC, et al. Pathogenic potential of Enterococcus faecalis strains isolated from root canals after unsuccessful endodontic treatment. Clin Oral Investig. 2021;25(9):5171–5179. DOI:10.1007/s00784-021-03823-w
  • Afonina I, Lim XN, Tan R, et al. Planktonic interference and biofilm alliance between aggregation substance and endocarditis- and biofilm-associated Pili in Enterococcus faecalis. J Bacteriol. 2018;200(24):e00361–00318. doi:10.1128/JB.00361-18.
  • VFDB[Internet]. Beijing, China: NHC; Key laboratory of systems biology of pathogens, institute of pathogen biology, CAMS&Pumc. [updated 2022 Apr 27; cited 2022 Aug 30]. Available from: http://www.mgc.ac.cn/VFs/main.htm
  • Zoletti GO, Pereira EM, Schuenck RP, et al. Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res Microbiol. 2011;162(2):151–158. DOI:10.1016/j.resmic.2010.09.018
  • Zhu X, Wang Q, Zhang C, et al. Prevalence, phenotype, and genotype of Enterococcus faecalis isolated from saliva and root canals in patients with persistent apical periodontitis. J Endod. 2010;36(12):1950–1955. DOI:10.1016/j.joen.2010.08.053
  • Barbosa-Ribeiro M, De-Jesus-Soares A, Zaia AA, et al. Antimicrobial susceptibility and characterization of virulence genes of Enterococcus faecalis isolates from teeth with failure of the endodontic treatment. J Endod. 2016;42(7):1022–1028. DOI:10.1016/j.joen.2016.03.015
  • Anderson AC, Jonas D, Huber I, et al. Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Front Microbiol. 2015;6:1534.
  • Ran SJ, Jiang W, Zhu CL, et al. Exploration of the mechanisms of biofilm formation by Enterococcus faecalis in glucose starvation environments. Aust Dent J. 2015;60(2):143–153. DOI:10.1111/adj.12324
  • Ran S, He Z, Liang J. Survival of Enterococcus faecalis during alkaline stress: changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch Oral Biol. 2013;58(11):1667–1676.
  • Chen W, Liang J, He Z, et al. Differences in the chemical composition of Enterococcus faecalis biofilm under conditions of starvation and alkalinity. Bioengineered. 2017;8(1):1–7. DOI:10.1080/21655979.2016.1226655
  • Liu H, Xu Q, Huo L, et al. Chemical composition of Enterococcus faecalis in biofilm cells initiated from different physiologic states. Folia Microbiol (Praha). 2014;59(5):447–453. DOI:10.1007/s12223-014-0319-1
  • Gao Y, Jiang X, Lin D, et al. The starvation resistance and biofilm formation of Enterococcus faecalis in coexistence with candida albicans, streptococcus gordonii, actinomyces viscosus, or lactobacillus acidophilus. J Endod. 2016;42(8):1233–1238. DOI:10.1016/j.joen.2016.05.002
  • Chavez DPLE, Davies JR, Bergenholtz G, et al. Strains of Enterococcus faecalis differ in their ability to coexist in biofilms with other root canal bacteria. Int Endod J. 2015;48(10):916–925. DOI:10.1111/iej.12501
  • Tan CAZ, Lam LN, Biukovic G, et al. Enterococcus faecalis antagonizes Pseudomonas aeruginosa growth in mixed-species interactions. J Bacteriol. 2022;204(7):e0061521. DOI:10.1128/jb.00615-21
  • Mathew S, Yaw-Chyn L, Kishen A. Immunogenic potential of Enterococcus faecalis biofilm under simulated growth conditions. J Endod. 2010;36(5):832–836.
  • Ramirez T, Shrestha A, Kishen A. Inflammatory potential of monospecies biofilm matrix components. Int Endod J. 2019;52(7):1020–1027.
  • Wu S, Liu Y, Lei L, et al. Endogenous antisense RNA modulates biofilm organization and pathogenicity of. Exp Ther Med. 2021;21(1):69. DOI:10.3892/etm.2020.9501
  • Wu S, Liu Y, Zhang H, et al. The susceptibility to calcium hydroxide modulated by the essential walR gene reveals the role for Enterococcus faecalis biofilm aggregation. J Endod. 2019;45(3):295–301.e2. DOI:10.1016/j.joen.2018.11.011
  • Wu S, Liu Y, Lei L, et al. Nanographene oxides carrying antisense walR RNA regulates the Enterococcus faecalis biofilm formation and its susceptibility to chlorhexidine. Lett Appl Microbiol. 2020;71(5):451–458. DOI:10.1111/lam.13354
  • Wu S, Liu Y, Zhang H, et al. Nano-graphene oxide with antisense RNA inhibits the pathogenicity of in periapical periodontitis. Journal of Dental Sciences. 2020;15(1):65–74. DOI:10.1016/j.jds.2019.09.006
  • Kirsch J, Basche S, Neunzehn J, et al. Is it really penetration? Part 2. Locomotion of Enterococcus faecalis cells within dentinal tubules of bovine teeth. Clin Oral Investig. 2019;23(12):4325–4334. DOI:10.1007/s00784-019-02865-5
  • Kirsch J, Basche S, Neunzehn J, et al. Is it really penetration? Locomotion of devitalized Enterococcus faecalis cells within dentinal tubules of bovine teeth. Arch Oral Biol. 2017;83:289–296.
  • Ran S, Wang J, Jiang W, et al. Assessment of dentinal tubule invasion capacity of Enterococcus faecalis under stress conditions ex vivo. Int Endod J. 2015;48(4):362–372. DOI:10.1111/iej.12322
  • Wong DTS, Cheung GSP. Extension of bactericidal effect of sodium hypochlorite into dentinal tubules. J Endod. 2014;40(6):825–829.
  • Azim AA, Aksel H, Zhuang T, et al. Efficacy of 4 irrigation protocols in killing bacteria colonized in dentinal tubules examined by a novel confocal laser scanning microscope analysis. J Endod. 2016;42(6):928–934. DOI:10.1016/j.joen.2016.03.009
  • Sedgley CM, Lennan SL, Appelbe OK. Survival of Enterococcus faecalis in root canals ex vivo. Int Endod J. 2005;38(10):735–742.
  • Castellani F, Ghidini V, Tafi MC, et al. Fate of pathogenic bacteria in microcosms mimicking human body sites. Microb Ecol. 2013;66(1):224–231. DOI:10.1007/s00248-013-0239-7
  • J E, Jiang YT, Yan PF, et al. Biological changes of Enterococcus faecalis in the viable but nonculturable state. Genet Mol Res. 2015;14(4):14790–14801. DOI:10.4238/2015.November.18.44
  • Rosen E, Tsesis I, Elbahary S, et al. Eradication of Enterococcus faecalis biofilms on human dentin. Front Microbiol. 2016;7:2055.
  • Ran S, Huang J, Liu B, et al. Enterococcus faecalis activates NLRP3 inflammasomes leading to increased interleukin-1 beta secretion and pyroptosis of THP-1 macrophages. Microb Pathog. 2021;154:104761.
  • Chi D, Lin X, Meng Q, et al. Real-time induction of macrophage apoptosis, pyroptosis, and necroptosis by Enterococcus faecalis OG1RF and two root canal isolated strains. Front Cell Infect Microbiol. 2021;11:720147.
  • Zou J, Shankar N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cell Microbiol. 2016;18(6):831–843.
  • Zou J, Shankar N, Deepe GS. Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages. Infect Immun. 2014;82(12):5132–5142.
  • Yang HH, Jun HK, Jung YJ, et al. Enterococcus faecalis activates caspase-1 leading to increased interleukin-1 beta secretion in macrophages. J Endod. 2014;40(10):1587–1592. DOI:10.1016/j.joen.2014.06.015
  • Lin D, Gao Y, Zhao L, et al. Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 2018;498(4):1028–1036. DOI:10.1016/j.bbrc.2018.03.109
  • Wei L, Xia F, Wang J, et al. Carbohydrate metabolism affects macrophage-mediated killing of Enterococcus faecalis. mSystems. 2021;6(5):e0043421. DOI:10.1128/mSystems.00434-21
  • Mohamed EM, Tian F, Elashiry M, et al. Enterococcus faecalis shifts macrophage polarization toward M1-like phenotype with an altered cytokine profile. J Oral Microbiol. 2021;13(1):1868152. DOI:10.1080/20002297.2020.1868152
  • Polak D, Yaya A, Levy DH, et al. Enterococcus faecalis sustained infection induces macrophage pro-resolution polarization. Int Endod J. 2021;54(10):1840–1849. DOI:10.1111/iej.13574
  • Wang L, Jin H, Ye D, et al. Enterococcus faecalis lipoteichoic acid-induced NLRP3 inflammasome via the activation of the nuclear factor kappa B pathway. J Endod. 2016;42(7):1093–1100. DOI:10.1016/j.joen.2016.04.018
  • Baik JE, Ryu YH, Han JY, et al. Lipoteichoic acid partially contributes to the inflammatory responses to Enterococcus faecalis. J Endod. 2008;34(8):975–982. DOI:10.1016/j.joen.2008.05.005
  • Xu Z, Tong Z, Neelakantan P, et al. Enterococcus faecalis immunoregulates osteoclastogenesis of macrophages. Exp Cell Res. 2018;362(1):152–158. DOI:10.1016/j.yexcr.2017.11.012
  • Deng Z, Wang S, Heng BC, et al. Enterococcus faecalis promotes osteoclast differentiation within an osteoblast/osteoclast co-culture system. Biotechnol Lett. 2016;38(9):1443–1448. DOI:10.1007/s10529-016-2142-z
  • Wang S, Deng Z, Seneviratne CJ, et al. Enterococcus faecalis promotes osteoclastogenesis and semaphorin 4D expression. Innate Immun. 2015;21(7):726–735. DOI:10.1177/1753425915593162
  • Park OJ, Yang J, Kim J, et al. Enterococcus faecalis attenuates the differentiation of macrophages into osteoclasts. J Endod. 2015;41(5):658–662. DOI:10.1016/j.joen.2014.12.015
  • Wang L, Jin H, Ao X, et al. JAK2-STAT3 signaling pathway is involved in rat periapical lesions induced by Enterococcus faecalis. Oral Dis. 2019;25(7):1769–1779. DOI:10.1111/odi.13169
  • Wang S, Heng BC, Qiu S, et al. Lipoteichoic acid of Enterococcus faecalis inhibits osteoclastogenesis via transcription factor RBP-J. Innate Immun. 2019;25(1):13–21. DOI:10.1177/1753425918812646
  • Yang J, Park OJ, Kim J, et al. Lipoteichoic acid of Enterococcus faecalis inhibits the differentiation of macrophages into osteoclasts. J Endod. 2016;42(4):570–574. DOI:10.1016/j.joen.2016.01.012
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death & Differentiation. 2018;25(3):486–541. DOI:10.1038/s41418-017-0012-4
  • Green DR, Ferguson T, Zitvogel L, et al. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9(5):353–363. DOI:10.1038/nri2545
  • Nagata S, Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17(5):333–340.
  • Franke TF, Hornik CP, Segev L, et al. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–8998. DOI:10.1038/sj.onc.1207115
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420.
  • Xia S, Hollingsworth LRT, Wu H. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb Perspect Biol. 2020;12(3):a036400.
  • de Vasconcelos NM, Lamkanfi M, de Vasconcelos NM. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb Perspect Biol. 2020;12(5):a036392.
  • Zhan C, Huang M, Yang X, et al. MLKL: functions beyond serving as the executioner of necroptosis. Theranostics. 2021;11(10):4759–4769. DOI:10.7150/thno.54072
  • Jiang W, Deng Z, Dai X, et al. Panoptosis: a new insight into oral infectious diseases. Front Immunol. 2021;12:789610.
  • Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.
  • Place DE, Lee S, Kanneganti TD. Panoptosis in microbial infection. Curr Opin Microbiol. 2021;59:42–49.
  • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13(10):722–737.
  • Wang S, Zhang K, Yao Y, et al. Autophagy and mitochondrial homeostasis during infection: a double-edged sword. Front Cell Dev Biol. 2021;9:738932.
  • Zhu L, Yang J, Zhang J, et al. The presence of autophagy in human periapical lesions. J Endod. 2013;39(11):1379–1384. DOI:10.1016/j.joen.2013.07.013
  • Huang HY, Wang WC, Lin PY, et al. The roles of autophagy and hypoxia in human inflammatory periapical lesions. Int Endod J. 2018;51(Suppl 2):e125–145. DOI:10.1111/iej.12782
  • Mills CD. Anatomy of a discovery: m1 and m2 macrophages. Front Immunol. 2015;6:212.
  • Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018;19(6):1801.
  • Varga Z, Molnar T, Mazlo A, et al. Differences in the sensitivity of classically and alternatively activated macrophages to TAK1 inhibitor-induced necroptosis. Cancer Immunol Immunother. 2020;69(11):2193–2207. DOI:10.1007/s00262-020-02623-7
  • Stunault MI, Bories G, Guinamard RR, et al. Metabolism plays a key role during macrophage activation. Mediators Inflamm. 2018;2018:2426138.
  • Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–430. DOI:10.1016/j.immuni.2015.02.005
  • Lima SM, Sousa MG, Freire MS, et al. Immune response profile against persistent endodontic pathogens Candida albicans and Enterococcus faecalis in vitro. J Endod. 2015;41(7):1061–1065. DOI:10.1016/j.joen.2015.02.016
  • Pereira M, Petretto E, Gordon S, et al. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci. 2018;131(11):jcs216267. DOI:10.1242/jcs.216267
  • Yao Z, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation. Cells. 2021;11(1):132.
  • Usui M, Onizuka S, Sato T, et al. Mechanism of alveolar bone destruction in periodontitis - periodontal bacteria and inflammation. Jpn Dent Sci Rev. 2021;57:201–208.
  • Azuma MM, Samuel RO, Gomes-Filho JE, et al. The role of IL-6 on apical periodontitis: a systematic review. Int Endod J. 2014;47(7):615–621. DOI:10.1111/iej.12196
  • Mulholland BS, Forwood MR, Morrison NA. Monocyte chemoattractant protein-1 (MCP-1/CCL2) drives activation of bone remodelling and skeletal metastasis. Curr Osteoporos Rep. 2019;17(6):538–547.
  • Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone. 2019;122:101–113.
  • Li Y, Wen C, Zhong J, et al. Enterococcus faecalis OG1RF induces apoptosis in MG63 cells via caspase‐3/‐8/‐9 without activation of caspase‐1/GSDMD. Oral Dis. 2022;28(7):2026–2035. doi:10.1111/odi.13996. Epub ahead of print.
  • Dai X, Deng Z, Liang Y, et al. Enterococcus faecalis induces necroptosis in human osteoblastic MG63 cells through the RIPK3/MLKL signalling pathway. Int Endod J. 2020;53(9):1204–1215. DOI:10.1111/iej.13323
  • Ran S, Chu M, Gu S, et al. Enterococcus faecalis induces apoptosis and pyroptosis of human osteoblastic MG63 cells via the NLRP3 inflammasome. Int Endod J. 2019;52(1):44–53. DOI:10.1111/iej.12965
  • Li Y, Tong Z, Ling J. Effect of the three Enterococcus faecalis strains on apoptosis in MC3T3 cells. Oral Dis. 2019;25(1):309–318.
  • Tian Y, Zhang X, Zhang K, et al. Effect of Enterococcus faecalis lipoteichoic acid on apoptosis in human osteoblast-like cells. J Endod. 2013;39(5):632–637. DOI:10.1016/j.joen.2012.12.019
  • Wang S, Deng Z, Ye X, et al. Enterococcus faecalis attenuates osteogenesis through activation of p38 and ERK1/2 pathways in MC3T3-E1 cells. Int Endod J. 2016;49(12):1152–1164. DOI:10.1111/iej.12579
  • Park OJ, Kim J, Yang J, et al. Enterococcus faecalis inhibits osteoblast differentiation and induces chemokine expression. J Endod. 2015;41(9):1480–1485. DOI:10.1016/j.joen.2015.04.025
  • Karygianni L, Wiedmann-Al-Ahmad M, Finkenzeller G, et al. Enterococcus faecalis affects the proliferation and differentiation of ovine osteoblast-like cells. Clin Oral Investig. 2012;16(3):879–887. DOI:10.1007/s00784-011-0563-6
  • Li Y, Sun S, Wen C, et al. Effect of Enterococcus faecalis OG1RF on human calvarial osteoblast apoptosis. BMC Oral Health. 2022;22(1):279. DOI:10.1186/s12903-022-02295-y
  • Iaquinta MR, Mazzoni E, Bononi I, et al. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol. 2019;7:268.
  • Adithya SP, Balagangadharan K, Selvamurugan N. Epigenetic modifications of histones during osteoblast differentiation. Biochim Biophys Acta, Gene Regul Mech. 2021;1865(1):194780.
  • Dai X, Ma R, Jiang W, et al. Enterococcus faecalis-induced macrophage necroptosis promotes refractory apical periodontitis. Microbiol Spectr. 2022;10(4):e0104522. DOI:10.1128/spectrum.01045-22
  • Cheng R, Feng Y, Zhang R, et al. The extent of pyroptosis varies in different stages of apical periodontitis. Biochim Biophys Acta Mol Basis Dis. 2018;1864(1):226–237. DOI:10.1016/j.bbadis.2017.10.025
  • M-Y W, J-H L. Autophagy and macrophage functions: inflammatory response and phagocytosis. Cells. 2019;9(1):70.
  • Ran S, Liu B, Jiang W, et al. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress. Front Microbiol. 2015;6:795.
  • Halder V, McDonnell B, Uthayakumar D, et al. Genetic interaction analysis in microbial pathogens: unravelling networks of pathogenesis, antimicrobial susceptibility and host interactions. FEMS Microbiol Rev. 2021;45(3):fuaa055. DOI:10.1093/femsre/fuaa055
  • Freire MS, Oliveira NG, Lima SMF, et al. IL-4 absence triggers distinct pathways in apical periodontitis development. J Proteomics. 2021;233:104080.
  • Xiong H, Wei L, Peng B. The presence and involvement of interleukin-17 in apical periodontitis. Int Endod J. 2019;52(8):1128–1137.
  • Siqueira JF Jr., Rocas IN. Present status and future directions: microbiology of endodontic infections. Int Endod J. 2022;55 Suppl 3:512-530. doi:10.1111/iej.13677. Epub ahead of print.