1,458
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Interaction between microorganisms and dental material surfaces: general concepts and research progress

, , , &
Article: 2196897 | Received 21 Feb 2023, Accepted 24 Mar 2023, Published online: 05 Apr 2023

References

  • Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol. 2017;15(7):996–15. DOI:10.2174/1570159X15666170313122937.
  • Li ZR, Sun J, Du Y, et al. Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nat Chem Biol. 2021 May;17(5):576–584. DOI:10.1038/s41589-021-00745-2.
  • Raviraj GA, Bhat KG, Kugaji MS, et al. Study of microbial diversity in saliva and plaque samples from caries-free and caries-affected children using denaturing gradient gel electrophoresis. J Indian Soc Pedod Prev Dent. 2018 Oct-Dec;36(4):396–401. DOI:10.4103/JISPPD.JISPPD_206_18.
  • Hao Y, Huang X, Zhou X, et al. Influence of dental prosthesis and restorative materials interface on oral biofilms. Int J Mol Sci. 2018 Oct 14;19(10):3157. DOI:10.3390/ijms19103157.
  • Bowen WH. Dental caries - not just holes in teeth! A perspective. Mol Oral Microbiol. 2016 Jun;31(3):228–233. DOI:10.1111/omi.12132.
  • Ahmed O, Sibuyi NRS, Fadaka AO, et al. Plant extract-synthesized silver nanoparticles for application in dental therapy. Pharmaceutics. 2022 Feb 8;14(2):380. DOI:10.3390/pharmaceutics14020380.
  • Tovar JA, Durán C, Rodríguez A, et al. Adhesion of salivary components to Streptococcus mutans peptides. Acta Odontol Latinoam. 2006;19(2):53–58.
  • Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068. DOI:10.1155/2014/476068.
  • McIlvanna E, Linden GJ, Craig SG, et al. Fusobacterium nucleatum and oral cancer: a critical review. BMC Cancer. 2021 Nov 13;21(1):1212. DOI:10.1186/s12885-021-08903-4.
  • Sedghi L, DiMassa V, Harrington A, et al. The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000. 2021 Oct;87(1):107–131. DOI:10.1111/prd.12393.
  • Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci. 2021 Sep 30;13(1):30. DOI:10.1038/s41368-021-00137-1.
  • Engel AS, Kranz HT, Schneider M, et al. Biofilm formation on different dental restorative materials in the oral cavity. BMC Oral Health. 2020 Jun 3;20(1):162. DOI:10.1186/s12903-020-01147-x.
  • Tu Y, Deng S, Wang Y, et al. Adhesive ability of different oral pathogens to various dental materials: an in vitro study. Can J Infect Dis Med Microbiol. 2022 Aug 1;2022: 9595067. DOI:10.1155/2022/9595067.
  • Tu Y, Wang Y, Su L, et al. In vivo microbial diversity analysis on different surfaces of dental restorative materials via 16S rDNA sequencing. Med Sci Monit. 2020 Jul 6;26: e923509. DOI:10.12659/MSM.923509.
  • Knight ET, Liu J, Seymour GJ, et al. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases. Periodontol 2000. 2016 Jun;71(1):22–51. DOI:10.1111/prd.12110.
  • Bacali C, Vulturar R, Buduru S, et al. Oral microbiome: getting to know and befriend neighbors, a biological approach. Biomedicines. 2022 Mar 14;10(3):671. DOI:10.3390/biomedicines10030671.
  • Rabin N, Zheng Y, Opoku-Temeng C, et al. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493–512. DOI:10.4155/fmc.15.6.
  • Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022 Oct;20(10):608–620. DOI:10.1038/s41579-022-00767-0.
  • Kim D, Barraza JP, Arthur RA, et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12375–12386. DOI:10.1073/pnas.1919099117.
  • Chenicheri S, U R, Ramachandran R, et al. Insight into oral biofilm: primary, secondary and residual caries and phyto-challenged solutions. Open Dent J. 2017 Jun 30;11(1):312–333. DOI:10.2174/1874210601711010312.
  • Mo SS, Bao W, Lai GY, et al. The microfloral analysis of secondary caries biofilm around class I and class II composite and amalgam fillings. BMC Infect Dis. 2010 Aug 17;10(1):241. DOI:10.1186/1471-2334-10-241.
  • Beun S, Glorieux T, Devaux J, et al. Characterization of nanofilled compared to universal and microfilled composites. Dent Mater. 2007 Jan;23(1):51–59. DOI:10.1016/j.dental.2005.12.003.
  • Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020 Apr 17;15: 2555–2562. DOI:10.2147/IJN.S246764.
  • Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011 Aug;32(24):5706–5716. DOI:10.1016/j.biomaterials.2011.04.040.
  • Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018 Jul;7(13):e1701503. DOI:10.1002/adhm.201701503.
  • Wang Q, Zhang Y, Li Q, et al. Therapeutic applications of antimicrobial silver-based biomaterials in dentistry. Int J Nanomedicine. 2022 Jan 28;17: 443–462. DOI:10.2147/IJN.S349238.
  • Deb S, Chana S. Biomaterials in relation to dentistry. Front Oral Biol. 2015;17:1–12. DOI:10.1159/000381686.
  • Sterzenbach T, Helbig R, Hannig C, et al. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020 Dec;24(12):4237–4260. DOI:10.1007/s00784-020-03646-1.
  • Helbig R, Hannig M, Basche S, et al. Bioadhesion on textured interfaces in the human oral cavity-an in situ study. Int J Mol Sci. 2022 Jan 21;23(3):1157. DOI:10.3390/ijms23031157.
  • Orstavik D. Antibacterial properties of and element release from some dental amalgams. Acta Odontol Scand. 1985 Aug;43(4):231–239. DOI:10.3109/00016358509046503.
  • Farrugia C, Camilleri J. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review. Dent Mater. 2015 Apr;31(4):e89–99. DOI:10.1016/j.dental.2014.12.005.
  • Nizami MZI, Xu VW, Yin IX, et al. Ceramic nanomaterials in caries prevention: a narrative review. Nanomaterials (Basel). 2022 Dec 11;12(24):4416. DOI:10.3390/nano12244416.
  • Imran E, Cooper PR, Ratnayake J, et al. Potential beneficial effects of hydroxyapatite nanoparticles on caries lesions in vitro-a review of the literature. Dent J (Basel). 2023 Feb 7;11(2):40. DOI:10.3390/dj11020040.
  • Lee JH, Seo SJ, Kim HW. Bioactive glass-based nanocomposites for personalized dental tissue regeneration. Dent Mater J. 2016 Oct 1;35(5):710–720. DOI:10.4012/dmj.2015-428.
  • Mortazavian H, Picquet GA, Lejnieks J, et al. Understanding the role of shape and composition of star-shaped polymers and their ability to both bind and prevent bacteria attachment on oral relevant surfaces. J Funct Biomater. 2019 Dec 17;10(4):56. DOI:10.3390/jfb10040056.
  • Marine J, Myers CP, Picquet GA, et al. Reduction of bacterial attachment on hydroxyapatite surfaces: using hydrophobicity and chemical functionality to enhance surface retention and prevent attachment. Colloids Surf B Biointerfaces. 2018 Jul 1;167: 531–537. DOI:10.1016/j.colsurfb.2018.04.045.
  • Chun ALM, Mosayyebi A, Butt A, et al. Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: a multifactorial microfluidic study. Microbiologyopen. 2022 Aug;11(4):e1310. DOI:10.1002/mbo3.1310.
  • Salas-Tovar JA, Escobedo-García S, Olivas GI, et al. Method-induced variation in the bacterial cell surface hydrophobicity MATH test. J Microbiol Methods. 2021 Jun;185:106234. DOI:10.1016/j.mimet.2021.106234.
  • Mabboux F, Ponsonnet L, Morrier JJ, et al. Surface free energy and bacterial retention to saliva-coated dental implant materials–an in vitro study. Colloids Surf B Biointerfaces. 2004 Dec 25;39(4):199–205. DOI:10.1016/j.colsurfb.2004.08.002.
  • Khanmohammadi Chenab K, Sohrabi B, Rahmanzadeh A. Superhydrophobicity: advanced biological and biomedical applications. Biomater Sci. 2019 Aug 1;7(8):3110–3137. DOI:10.1039/c9bm00558g.
  • Yin Q, Guo Q, Wang Z, et al. 3D-Printed bioinspired Cassie-Baxter wettability for controllable microdroplet manipulation. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1979–1987. DOI:10.1021/acsami.0c18952.
  • Bui VT, Abdelrasoul A, McMartin DW. Influence of zwitterionic structure design on mixed matrix membrane stability, hydrophilicity, and fouling resistance: a computational study. J Mol Graph Model. 2022 Jul;114:108187. DOI:10.1016/j.jmgm.2022.108187.
  • Qin XH, Senturk B, Valentin J, et al. Cell-membrane-inspired silicone interfaces that mitigate proinflammatory macrophage activation and bacterial adhesion. Langmuir. 2019 Feb 5;35(5):1882–1894. DOI:10.1021/acs.langmuir.8b02292.
  • Venault A, Yang HS, Chiang YC, et al. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings. ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3201–3210. DOI:10.1021/am404780w.
  • Sharon E, Sharabi R, Eden A, et al. Antibacterial activity of orthodontic cement containing quaternary ammonium polyethylenimine nanoparticles adjacent to orthodontic brackets. Int J Environ Res Public Health. 2018 Mar 27;15(4):606. DOI:10.3390/ijerph15040606.
  • Terada A, Okuyama K, Nishikawa M, et al. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnol Bioeng. 2012 Jul;109(7):1745–1754. DOI:10.1002/bit.24429.
  • Badihi Hauslich L, Sela MN, Steinberg D, et al. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res. 2013 Aug;24(Suppl A100):49–56. DOI:10.1111/j.1600-0501.2011.02364.x.
  • Nogueira RD, Silva CB, Lepri CP, et al. Evaluation of surface roughness and bacterial adhesion on tooth enamel irradiated with high intensity lasers. Braz Dent J. 2017 Jan-Feb;28(1):24–29. DOI:10.1590/0103-6440201701190.
  • Wilson-Nieuwenhuis JST, Dempsey-Hibbert N, Liauw CM, et al. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis. Colloids Surf B Biointerfaces. 2017 Dec 1;160: 126–135. DOI:10.1016/j.colsurfb.2017.09.019.
  • Quirynen M, Bollen CM, Papaioannou W, et al. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants. 1996 Mar-Apr;11(2):169–178.
  • Dunny GM, Hancock LE, Shankar N. Enterococcal biofilm structure and role in colonization and disease. In: Gilmore M, Clewell D, Ike Y, and Shankar N, editors. Enterococci: from commensals to leading causes of drug resistant infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary: 2014 409–434 Feb 14. PMID: 24649508.
  • Xing R, Lyngstadaas SP, Ellingsen JE, et al. The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation. Clin Oral Implants Res. 2015 Jun;26(6):649–656. DOI:10.1111/clr.12354.
  • Abdalla MM, Ali IAA, Khan K, et al. The influence of surface roughening and polishing on microbial biofilm development on different ceramic materials. J Prosthodont. 2021 Jun;30(5):447–453. DOI:10.1111/jopr.13260.
  • Hannig M. Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci. 1999 Feb;107(1):55–64. DOI:10.1046/j.0909-8836.1999.eos107109.x.
  • Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small. 2012 Aug 20;8(16):2489–2494. DOI:10.1002/smll.201200528.
  • Senevirathne SWMAI, Toh YC, Yarlagadda PKDV. Fluid flow induces differential detachment of live and dead bacterial cells from nanostructured surfaces. ACS Omega. 2022 Jun 28;7(27):23201–23212. DOI:10.1021/acsomega.2c01208.
  • Al-Hinai MH, Sathe P, Al-Abri MZ, et al. Antimicrobial activity enhancement of poly(ether sulfone) membranes by in situ growth of ZnO nanorods. ACS Omega. 2017 Jul 31;2(7):3157–3167. DOI:10.1021/acsomega.7b00314.
  • Gingichashvili S, Feuerstein O, Steinberg D. Topography and expansion patterns at the biofilm-agar interface in bacillus subtilis biofilms. Microorganisms. 2020 Dec 31;9(1):84. DOI:10.3390/microorganisms9010084.
  • Lee SW, Johnson EL, Chediak JA, et al. High-throughput biofilm assay to investigate bacterial interactions with surface topographies. ACS Appl Bio Mater. 2022 Aug 15;5(8):3816–3825. DOI:10.1021/acsabm.2c00367.
  • Lorite GS, Janissen R, Clerici JH, et al. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS ONE. 2013 Sep 20;8(9):e75247. DOI:10.1371/journal.pone.0075247.
  • Khalid S, Gao A, Wang G, et al. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci. 2020 Dec 15;8(24):6840–6857. DOI:10.1039/d0bm00845a.
  • Carman ML, Estes TG, Feinberg AW, et al. Engineered antifouling microtopographies–correlating wettability with cell attachment. Biofouling. 2006;22(1–2):11–21. DOI:10.1080/08927010500484854.
  • Barbieri L, Sorzabal Bellido I, Beckett AJ, et al. One-step preparation of antimicrobial silicone materials based on PDMS and salicylic acid: insights from spatially and temporally resolved techniques. NPJ Biofilms Microbiomes. 2021 Jun 21;7(1):51. DOI:10.1038/s41522-021-00223-6.
  • Liu G, Zhou J, Sun H, et al. Effects of cone-shaped bend inlet cannulas of an axial blood pump on thrombus formation: an experiment and simulation study. Med Sci Monit. 2017 Apr 5;23: 1655–1661. DOI:10.12659/msm.903421.
  • Hoipkemeier-Wilson L, Schumacher JF, Carman ML, et al. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling. 2004 Feb;20(1):53–63. DOI:10.1080/08927010410001662689.
  • Evensen HT, Jiang H, Gotrik KW, et al. Transformations in wrinkle patterns: cooperation between nanoscale cross-linked surface layers and the submicrometer bulk in wafer-spun, plasma-treated polydimethylsiloxane. Nano Lett. 2009 Aug;9(8):2884–2890. DOI:10.1021/nl901136u.
  • Ma M, He Z, Yang J, et al. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films. Langmuir. 2011 Nov 1;27(21):13072–13081. DOI:10.1021/la2036289.
  • Xu LC, Siedlecki CA. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomed Mater. 2014 Jun;9(3):035003. DOI:10.1088/1748-6041/9/3/035003.
  • Gu H, Kolewe KW, Ren D. Conjugation in Escherichia coli biofilms on poly(dimethylsiloxane) surfaces with microtopographic patterns. Langmuir. 2017 Mar 28;33(12):3142–3150. DOI:10.1021/acs.langmuir.6b04679.
  • Straub H, Bigger CM, Valentin J, et al. Bacterial adhesion on soft materials: passive physicochemical interactions or active bacterial mechanosensing? Adv Healthc Mater. 2019 Apr;8(8):e1801323. DOI:10.1002/adhm.201801323.
  • Arias SL, Devorkin J, Civantos A, et al. Escherichia coli adhesion and biofilm formation on polydimethylsiloxane are independent of substrate stiffness. Langmuir. 2021 Jan 12;37(1):16–25. DOI:10.1021/acs.langmuir.0c00130.
  • Saha N, Monge C, Dulong V, et al. Influence of polyelectrolyte film stiffness on bacterial growth. Biomacromolecules. 2013 Feb 11;14(2):520–528. DOI:10.1021/bm301774a.
  • Guégan C, Garderes J, Le Pennec G, et al. Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surf B Biointerfaces. 2014 Feb 1;114: 193–200. DOI:10.1016/j.colsurfb.2013.10.010.
  • Zhao Y, Song F, Wang H, et al. Phagocytosis of Escherichia coli biofilm cells with different aspect ratios: a role of substratum material stiffness. Appl Microbiol Biotechnol. 2017 Aug;101(16):6473–6481. DOI:10.1007/s00253-017-8394-2.
  • Song F, Brasch ME, Wang H, et al. How bacteria respond to material stiffness during attachment: a role of Escherichia coli flagellar motility. ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22176–22184. DOI:10.1021/acsami.7b04757.
  • Friedlander RS, Vlamakis H, Kim P, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5624–5629. DOI:10.1073/pnas.1219662110.
  • Harris JC, Collins MS, Huang PH, et al. Bacterial surface detachment during nebulization with contaminated reusable home nebulizers. Microbiol Spectr. 2022 Feb 23;10(1):e0253521. DOI:10.1128/spectrum.02535-21.
  • Bilgili Can D, Dündar A, Barutçugil Ç, et al. Evaluation of surface characteristic and bacterial adhesion of low-shrinkage resin composites. Microsc Res Tech. 2021 Aug;84(8):1783–1793. DOI:10.1002/jemt.23735.
  • Molina-Henares MA, Ramos-González MI, Daddaoua A, et al. FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Res Microbiol. 2017 Jan;168(1):36–45. DOI:10.1016/j.resmic.2016.07.005.
  • O’Neal L, Baraquet C, Suo Z, et al. The Wsp system of Pseudomonas aeruginosa links surface sensing and cell envelope stress. Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2117633119. DOI:10.1073/pnas.2117633119.
  • Carlén A, Nikdel K, Wennerberg A, et al. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials. 2001 Mar;22(5):481–487. DOI:10.1016/s0142-9612(00)00204-0.
  • Glauser S, Astasov-Frauenhoffer M, Müller JA, et al. Bacterial colonization of resin composite cements: influence of material composition and surface roughness. Eur J Oral Sci. 2017 Aug;125(4):294–302. DOI:10.1111/eos.12355.
  • Hahnel S, Ionescu AC, Cazzaniga G, et al. Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties. J Dent. 2017 May;60:14–24. DOI:10.1016/j.jdent.2017.02.005.
  • Kozmos M, Virant P, Rojko F, et al. Bacterial adhesion of streptococcus mutans to dental material surfaces. Molecules. 2021 Feb 21;26(4):1152. DOI:10.3390/molecules26041152.
  • Wang Z, Shen Y, Haapasalo M. Dental materials with antibiofilm properties. Dent Mater. 2014 Feb;30(2):e1–16. DOI:10.1016/j.dental.2013.12.001.
  • Velazquez-Enriquez U, Scougall-Vilchis RJ, Contreras-Bulnes R, et al. Adhesion of Streptococci to various orthodontic composite resins. Aust Dent J. 2013 Mar;58(1):101–105. DOI:10.1111/adj.12027.
  • Kojnoková T, Nový F, Markovičová L. The study of chemical and thermal influences of the environment on the degradation of mechanical properties of carbon composite with epoxy resin. Polymers. 2022 Aug 9;14(16):3245. DOI:10.3390/polym14163245.
  • Barot T, Rawtani D, Kulkarni P, et al. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications. J Mech Behav Biomed Mater. 2020 Apr;104:103675. DOI:10.1016/j.jmbbm.2020.103675.
  • da Silva MA, Vitti RP, Sinhoreti MA, et al. Evaluation of the surface roughness and microleakage of dental composites exposed to different beverages. J Contemp Dent Pract. 2015 Oct 1;16(10):800–804. DOI:10.5005/jp-journals-10024-1760.
  • Nedeljkovic I, De Munck J, Ungureanu AA, et al. Biofilm-induced changes to the composite surface. J Dent. 2017 Aug;63:36–43. DOI:10.1016/j.jdent.2017.05.015.
  • Mei L, Busscher HJ, van der Mei HC, et al. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater. 2011 Aug;27(8):770–778. DOI:10.1016/j.dental.2011.03.017.
  • Padovani GC, Fùcio SB, Ambrosano GM, et al. In situ bacterial accumulation on dental restorative materials. CLSM/COMSTAT analysis. Am J Dent. 2015 Feb;28(1):3–8. PMID: 25864234.
  • Ilie O, van Turnhout AG, van Loosdrecht MC, et al. Numerical modelling of tooth enamel subsurface lesion formation induced by dental plaque. Caries Res. 2014;48(1):73–89. DOI:10.1159/000354123.
  • Barbosa RP, Pereira-Cenci T, Silva WM, et al. Effect of cariogenic biofilm challenge on the surface hardness of direct restorative materials in situ. J Dent. 2012 May;40(5):359–363. DOI:10.1016/j.jdent.2012.01.012.
  • Mushashe AM, Farias IC, Gonzaga CC, et al. Surface deterioration of indirect restorative materials. Braz Dent J. 2020 Jun;31(3):264–271. DOI:10.1590/0103-6440202002982.
  • Cunliffe D, de las Heras Alarcón C, Peters V, et al. Thermoresponsive surface-grafted poly(N − isopropylacrylamide) copolymers: effect of phase transitions on protein and bacterial attachment. Langmuir. 2003;19(7):2888–2899. DOI:10.1021/la026358l.
  • Ista LK, Pérez-Luna VH, López GP. Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol. 1999 Apr;65(4):1603–1609. DOI:10.1128/AEM.65.4.1603-1609.1999.
  • Yang C, Wu L, Li G. Magnetically responsive superhydrophobic surface: in Situ reversible switching of water droplet wettability and adhesion for droplet manipulation. ACS Appl Mater Interfaces. 2018 Jun 13;10(23):20150–20158. DOI:10.1021/acsami.8b04190.
  • LukáDeˇ K, Lyutakov O, Kubiková M. Dual-action flexible antimicrobial material: switchable self-cleaning, antifouling, and smart drug release. Adv Funct Mater. 2019;1901880(31):1901880. DOI:10.1002/adfm.201901880.
  • Guselnikova O, Elashnikov R, Postnikov P, et al. Piezo-responsive polyvinylidenefluoride/polymethylmethacrylate surface with triggerable water/oil wettability and adhesion. ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37461–37469. DOI:10.1021/acsami.8b06840.
  • Zeng H, Zhang Y, Mao S, et al. A reversibly electro-controllable polymer brush for electro-switchable friction. J Mater Chem C. 2017;5(24):5877–5881. DOI:10.1039/c7tc01624g.
  • Fears KP, Gonzalez-Begne M, Love CT, et al. Surface-induced changes in the conformation and glucan production of glucosyltransferase adsorbed on saliva-coated hydroxyapatite. Langmuir. 2015 Apr 28;31(16):4654–4662. DOI:10.1021/la504461h.