1,294
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Exopolysaccharides metabolism and cariogenesis of Streptococcus mutans biofilm regulated by antisense vicK RNA

, , , , , , & show all
Article: 2204250 | Received 19 Dec 2022, Accepted 13 Apr 2023, Published online: 28 Apr 2023

References

  • Pan W, Mao T, Xu QA, et al. A new gcrR-deficient Streptococcus mutans mutant for replacement therapy of dental caries. ScientificWorldjournal. 2013;2013:460202.
  • James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–17. DOI:10.1016/S0140-6736(18)32279-7
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681.
  • Bowen WH, Burne RA, Wu H, et al. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26(3):229–242.
  • Lin Y, Chen J, Zhou X, et al. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol. 2021;47(5):667–677.
  • Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013;92(12):1065–1073.
  • Cugini C, Shanmugam M, Landge N, et al. The role of exopolysaccharides in oral biofilms. J Dent Res. 2019;98(7):739–745.
  • Welin J, Wilkins JC, Beighton D, et al. Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol Lett. 2003;227(2):287–293. DOI:10.1016/S0378-1097(03)00693-1
  • Guo L, McLean JS, Lux R, et al. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Sci Rep. 2015;5(1):18015.
  • Wexler DL, Hudson MC, Burne RA. Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Immun. 1993;61(4):1259–1267.
  • Matsumoto M, Fujita K, Ooshima T. Binding of glucan-binding protein C to GTFD-synthesized soluble glucan in sucrose-dependent adhesion of Streptococcus mutans. Oral Microbiol Immunol. 2006;21(1):42–46.
  • Smith DJ. Dental caries vaccines: prospects and concerns. Crit Rev Oral Biol Med. 2002;13(4):335–349.
  • Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86.
  • Villanueva M, Garcia B, Valle J, et al. Sensory deprivation in Staphylococcus aureus. Nat Commun. 2018;9(1):523. DOI:10.1038/s41467-018-02949-y
  • Dobihal GS, Brunet YR, Flores-Kim J, et al. Homeostatic control of cell wall hydrolysis by the WalRK two-component signaling pathway in Bacillus subtilis. Elife. 2019;8. DOI:10.7554/eLife.52088
  • Kong L, Su M, Sang J, et al. The W-Acidic motif of histidine kinase walk is required for signaling and transcriptional regulation in streptococcus mutans. Front Microbiol. 2022;13:820089.
  • Senadheera MD, Guggenheim B, Spatafora GA, et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol. 2005;187(12):4064–4076. DOI:10.1128/JB.187.12.4064-4076.2005
  • Lei L, Yang Y, Mao M, et al. Modulation of biofilm exopolysaccharides by the streptococcus mutans vicX gene. Front Microbiol. 2015;6:1432.
  • Mao MY, Yang YM, Li KZ, et al. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-Size small RNAs in streptococcus mutans. Front Microbiol. 2016;7:687.
  • Lei L, Zhang B, Mao M, et al. Carbohydrate metabolism regulated by antisense vicR RNA in cariogenicity. J Dent Res. 2020;99(2):204–213. DOI:10.1177/0022034519890570
  • Khara P, Mohapatra SS, Biswas I. Role of CovR phosphorylation in gene transcription in Streptococcus mutans. Microbiology (Reading). 2018;164(4):704–715.
  • Dunning DW, McCall LW, Powell WF, et al. SloR modulation of the Streptococcus mutans acid tolerance response involves the GcrR response regulator as an essential intermediary. Microbiology (Reading). 2008;154(Pt 4):1132–1143. DOI:10.1099/mic.0.2007/012492-0
  • Millar JA, Raghavan R. Modulation of bacterial fitness and virulence through antisense RNAs. Front Cell Infect Microbiol. 2020;10:596277.
  • Raghavan R, Sloan DB, Ochman H. Antisense transcription is pervasive but rarely conserved in enteric bacteria. MBio. 2012;3(4). DOI:10.1128/mBio.00156-12
  • Lejars M, Caillet J, Solchaga-Flores E, et al. Regulatory interplay between RNase III and antisense RNAs in E. coli: the case of AsflhD and FlhD, component of the master regulator of motility. MBio. 2022;13(5):e0098122.
  • Gordon GC, Cameron JC, Pfleger BF. RNA sequencing identifies new RNase III cleavage sites in Escherichia coli and Reveals Increased Regulation of mRNA. MBio. 2017;8(2). DOI:10.1128/mBio.00128-17
  • Nicholson AW. Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA. 2014;5(1):31–48.
  • Zhang Y, Xie X, Ma W, et al. Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nanomicro Lett. 2020;12(1):74. DOI:10.1007/s40820-020-0409-3
  • Duque C, Stipp RN, Wang B, et al. Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun. 2011;79(2):786–796. DOI:10.1128/IAI.00725-10
  • Ajdic D, McShan WM, McLaughlin RE, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002;99(22):14434–14439. DOI:10.1073/pnas.172501299
  • Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622. DOI:10.1373/clinchem.2008.112797
  • Chen H, Zhang B, Weir MD, et al. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent. 2020;93:103278.
  • Lei L, Stipp RN, Chen T, et al. Activity of Streptococcus mutans VicR is modulated by antisense RNA. J Dent Res. 2018;97(13):1477–1484.
  • Keyes PH. Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously. J Dent Res. 1958;37(6):1088–1099.
  • Deng Y, Yang Y, Zhang B, et al. The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism. Int J Oral Sci. 2021;13(1):45. DOI:10.1038/s41368-021-00149-x
  • Senadheera D, Krastel K, Mair R, et al. Inactivation of VicK affects acid production and acid survival of Streptococcus mutans. J Bacteriol. 2009;191(20):6415–6424. DOI:10.1128/JB.00793-09
  • Nicolas GG, Lavoie MC. Streptococcus mutans and oral streptococci in dental plaque. Can J Microbiol. 2011;57(1):1–20.
  • Chen H, Yang Y, Weir MD, et al. Regulating oral biofilm from cariogenic state to non-cariogenic state via novel combination of bioactive therapeutic composite and gene-knockout. Microorganisms. 2020;8(9):1410.
  • Wasfi R, El-Rahman OA A, Zafer MM, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med. 2018;22(3):1972–1983.
  • Liu S, Chen M, Wang Y, et al. Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Arch Oral Biol. 2020;109:104578.
  • Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci. 2021;13(1):30.
  • Zeng L, Das S, Burne RA. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol. 2010;192(9):2434–2444.
  • Morse ML, Hill KL, Egan JB, et al. Metabolism of lactose by Staphylococcus aureus and its genetic basis. J Bacteriol. 1968;95(6):2270–2274.
  • Abranches J, Chen YY, Burne RA. Galactose metabolism by Streptococcus mutans. Appl Environ Microbiol. 2004;70(10):6047–6052.
  • Calmes R. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport. Infect Immun. 1978;19(3):934–942.
  • Podgornaia AI, Casino P, Marina A, et al. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling. Structure. 2013;21(9):1636–1647.
  • Idone V, Brendtro S, Gillespie R, et al. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect Immun. 2003;71(8):4351–4360. DOI:10.1128/IAI.71.8.4351-4360.2003
  • Huang L, Deighan P, Jin J, et al. Tombusvirus p19 captures RNase iii-cleaved double-stranded RNAs formed by overlapping sense and antisense transcripts in Escherichia coli. MBio. 2020;11(3):e00485–20.
  • Mao MY, Li M, Lei L, et al. The regulator gene rnc is closely involved in biofilm formation in streptococcus mutans. Caries Res. 2018;52(5):347–358.
  • Yamashita Y, Bowen WH, Burne RA, et al. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 1993;61(9):3811–3817.
  • Ren Z, Cui T, Zeng J, et al. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother. 2016;60(1):126–135. DOI:10.1128/AAC.00919-15
  • Tsumori H, Kuramitsu H. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol. 1997;12(5):274–280.
  • Ellepola K, Liu Y, Cao T, et al. Bacterial GtfB augments Candida albicans accumulation in cross-kingdom biofilms. J Dent Res. 2017;96(10):1129–1135.
  • Noda M, Sugihara N, Sugimoto Y, et al. Lactobacillus reuteri BM53-1 produces a compound that inhibits sticky glucan synthesis by Streptococcus mutans. Microorganisms. 2021;9(7):1390.
  • Souza JGS, Bertolini M, Thompson A, et al. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. Isme J. 2020;14(5):1207–1222. DOI:10.1038/s41396-020-0608-4
  • Wu R, Cui G, Cao Y, et al. Streptococcus mutans membrane vesicles enhance Candida albicans pathogenicity and carbohydrate metabolism. Front Cell Infect Microbiol. 2022;12:940602.
  • Wu R, Tao Y, Cao Y, et al. Streptococcus mutans membrane vesicles harboring glucosyltransferases augment Candida albicans biofilm development. Front Microbiol. 2020;11:581184.